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In this work, the dynamical behavior of the two mutually coupled Autonomous Van der Pol oscillator 

studied via numerical and experimental observations. We show, when the appropriate coupling co-efficient, the 

transition from phase synchronization to anticipatory synchronization. 

The transition confirmed through similarity function. The rich nonlinear dynamical phenomena of 

chaos identified and confirmed through bifurcation and Lyapunov exponent spectrum analysis. The well known 

period doubling route to chaos are identified. The above mentioned dynamical behavior are observed in the real 

time hardware experimental circuit simulations. 

 

I. Introduction 
In nonlinear dynamics, chaos generally represent as the present does not approximately determine the 

future. In the last two three decades, a tremendous amount of work have been done to identifying chaos, 

controlling, and synchronization, etc,. Chaotic behavior exists in many natural systems, such as weather and 

climate. This behavior can be studied through analysis of a chaotic mathematical model, or through analytical 

techniques such as Lyapunov exponent spectrum analysis, power spectrum, recurrence plots and Poincar´e 

maps. Chaos theory has applications in several disciplines, including meteorology, sociology, physics, 

engineering, economics, biology, and philosophy. The Van der Pol oscillator is a classical example of self 

oscillatory system is now considered as very useful mathematical model that can be used in much more 

complicated and modified systems [9]. The Van der Pol oscillators with non linear damping which can be 

treated as an equivalent of mechanical self excited systems. In the autonomous flat form a single oscillator, we 

did not get any chaotic motion because of its dimension. But the coupled system configuration we expect the 

chaotic motion. In the present study, we examine the existence of the chaotic attractors both numerical and 

experimental investigation for two mutually coupled Van der Pol oscillator. 

Studies of synchronization in oscillatory networks have been extensively reported in the various field 

such as physical [1], biological [2] and electrical systems [3]. Complete synchronization of chaotic oscillator has 

been described theoretically and observed experimentally[5]. Intention of coupled self oscillatory systems leads 

to new phenomena such as synchronization, hysteresis, phase Multistability, etc, [6-8]. Through the literature 

number of new idea’s have appeared and new types of synchronization have been identified [10-13]. The 

chaotic systems are synchronized such they are under control of mechanisms. Such as drive-response or active-

passive of the system, direct bi-directional (mutual) coupling or unidirectional (master-slave) diffusive coupling 

between the oscillators[14-16]. In this connection we introduce a linear feedback coupling [17] of the individual 

system and coupled mutually of the two systems. For a particular choice of parameter, we confirm the existence 

of the anticipatory synchronization via phase synchronization the coupling co-efficient is varied. 

This paper organized as follows, section 2, the proposed model of the two mutually coupled 

autonomous Van der Pol oscillator (2AVdP) is presented. Section 3, numerical and experimental studies of the 

existence of the chaotic attractor in 2AVdP, Section 4 deals with the anticipatory synchronization in a 2AVdp 

finally section 5, we conclude our results. 

 

II. The Model 
Van der pol proposed a nonlinear differential equations 

x¨ + μ(x2 − 1)x˙ + x = 0                                                     (1) 

 

The above equation is known as autonomous Van der pol oscillator (AVdp). Here, μ is the nonlinear 

damping. Studying the case μ >>1 , Van der pol discovered the importance of what has become known as 

relaxation oscillation [18]. The relaxation oscillation have become corner stone of geometric singular 

perturbation theory and play a significant role in the analysis. 

The two mutually coupled autonomous Van der Pol oscillator normalized circuit equation as follows, 
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x¨1 + μ1(x2
1
 − 1)x˙1 + x1 + ǫ(x2 − x1) = 0                           (2) 

x¨2 + μ2(x2
2 
− 1)x˙2 + x2 + ǫ(x1 − x2) = 0                           (3) 

 

where μ1−2 is the nonlinear damping and ǫ is the coupling co-efficient. For our numerical study, we split the 

Eq. (2) in two four first order differential equations as follows, 

x˙1 = x2                                                                (4) 

x˙2 = −μ1(x21 − 1)x2 − x1 + ǫ(x3 − x1) 

x˙3 = x4 

x˙4 = −μ2(x23 − 1)x4 − x3 + ǫ(x1 − x3) 

 

 
FIG. 1. Mechanical model of two mutually coupled Van der Pol oscillator. Here ’eps’ represent the coupling 

between the two oscillator system. 

 

In Fig. (1), shows the mechanical model of the two mutually coupled Van der Pol oscillator. K is the restoring 

force and the ′eps′ denotes the coupling co-efficient, D1(1 − x
2
1),D2(1 − x

2
3) is the nonlinear damping of the 

2AVdP. ’m’ is the mass of the system [9]. 

 

III. Numerical Analysis 
1. Anticipatory Synchronization 

Synchronization constitutes one of the most studied nonlinear phenomenon. The analysis of mutual 

synchronization of two weakly coupled nonlinear oscillator treated by Mayor and Gaponov [19-20]. 

Synchronization understood as an adjustment of rhythms of oscillating objects due to their interaction even if it 

is weak [21]. Van der pol oscillator constitutes the paradigmatic model to study synchronization. Quit recently, 

it has been discovered that two coupled non identical Van der pol oscillator can exhibit the phenomenon of 

anticipatory synchronization [22-26] in which the dynamical variable x3(t) anticipate x1(t) specifically given 

two slightly different oscillator in the Eq. (3). If there is a coupling between them with a coupling strength ǫ, 

then one expect x1(t) synchronize x3(t + τ ) in a range of value ǫ, where the delay is τ 6= 0 is the time anticipate 

which depends on both ǫ and the parameter characterizing the difference between the oscillators [25]. We 

cannot observe when the two system are identical (same parameter value). If the two system have the same 

parameter value, we get a complete synchronization. So, we have some mismatches needed of the two 

oscillators for observing anticipatory synchronization. Here we took of our proposed systems the nonlinear 

damping values are μ1=4.0, μ2=4.1 and coupling co efficient are ǫ=0.11, we observe the anticipatory 

synchronization shown in the Fig. (2)a. Increasing ǫ often leads to a transition of complete synchronization at 

ǫ=1.6. (i.e), (x3(t)−x1(t))=0 as shown in the Fig. (2)b. 

 

We have also performed a experimental study using electronic circuits that replicates to detect the 

anticipatory synchronization. The proposed circuits are shown in the section (IV) and we normalized the 

nonlinear damping values and the coupling co-efficient which are given in the 
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FIG. 2. Numerically observed time trajectories (t −x3(t), x1(t)) planes of (a) anticipatory synchronization and 

(b) complete synchronization for the particular range of cou- pling co efficient. 

 

Same section. Figure (3) shows that the experimental observation of anticipatory synchronization (Fig. 

(3)a) and complete synchronization (Fig. (3)b) for the appropriate experimental component values which is 

fixed to matches with its numerical parameters. Following time series of drive and response system variables 

x1(t), x3(t) is shown in the Fig. 2(a,b) and the corresponding experimental plots are also shown in the fig. 3(a,b). 

From these Fig. 3(a,b), it is clearly seen that both the phase and amplitudes of the drive and response systems 

are coinciding, providing that the 2AVdp exhibits complete synchronization. 

For ǫ=0.11, the coupled oscillators exhibits anticipatory synchronization. Figure 2(a) and Fig. 3(a) 

depicts the time series plot of x1(t)and x3(t)numerically and experimentally as v1(τ ) and v2(τ ). From these 

figure we can observe that x3(t) anticipates x1(t). In other words, the response system anticipates the drive 

system, thereby we can infer the anticipatory synchronization of the system shown in the Eq. (3). To quantify 

anticipatory synchronization, we use the following similarity function [27] defined with respect to one 

dynamical variable, say x1 of the Van der pol oscillator, 

 

                                    (5) 

 

Where τ is the anticipation time. Anticipating synchronization between the two oscillators is characterized by 

the conditions Smin and τ 6=0. While complete 

 

 
FIG. 3. Experimental observation of Anticipatory synchro- nization and complete synchronization when the 

coupling co-efficient are varied. The circuit components are fixed as per Section IV. 
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FIG. 4. Numerical calculation of similarity function for antic-ipatory and complete synchronization. Here the 

dashed line indicates the complete synchronization and the smooth lineindicates the anticipatory 

synchronization of the system. 

 

Synchronization S(τ )=0, τ=0. Numerically as the coupling strength is increased, one observes the transition 

from anticipatory synchronization to complete synchronization. 

In the above similarity function figure express that the anticipatory synchronization and the complete 

synchronization of 2AVdp. Figure (4) the dotted lines shows that complete synchronization for S(τ )=0 and τ=0, 

and block line shows that anticipatory synchronization S(τ )=0.02926, τ 6= 0. 

 

2. Quasiperiodicity in a bifurcation diagram 

In the above part discussed about that the anticipatory synchronization when the two oscillator having 

some mismatching parameters. Here, we analyze to changingthe mismatching parameters and to observe what 

kind of phenomenon can be expressed from the Eq. (3). If the mismatching is increased μ1 < μ2. The periodicity 

can be broken and the quasiperiodicity are born. 

The quasiperiodicity can be observed in phase portraits and power spectrum and bifurcation diagram 

analysis. The quasiperiodicity can be confirmed by Lyapunov spectrum analysis by λ=0. Figure (6) shows the 

one parameter bifurcation and its corresponding Lyapunov exponent spectrum of the coupling co-efficient in the 

range of ǫ ∈ (0.85, 1.02). In this figure, the quasiperiodic exist up to =0.90. The two Lyapunov exponent are 

zero which tells that the existence of the quasiperiodic nature. 

 

 
FIG. 5. numerically computed (a) Bifurcation diagram, (b) Lyapunov spectrum for the coupling coefficient in 

the range of ǫ 2 (0.85, 1.02). 
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3. Period doubling cascades 

In the above section describes the existence of the quasiperiodic motion in a 2AVdp. Here, we have to 

changing the mismatching value (i.e), μ1=2.5, μ2=5.5 the invariant torus is destroyed. The chaotic attractor are 

replacing the quasiperiodic motion when the control parameter are increased it is shown in the Fig. (6). Figure 

6(a) is the full range of bifurcation diagram express the torus break through to chaoticity. In the Fig. (7) the 

region of the bifurcation diagram indicated the colour box in the Fig. (6). The extended region of bifurcation 

diagram clearly indicates the period doubling cascades and corresponding lyaponuv spectrum in Fig. 7(b) also 

confirm the same. The period doubling cascades are considered as a possible route to chaos. In order to see more 

evidently we choose some specific parameter μ1,2 and ǫ and we plot again the bifurcation diagram with respect 

to the existing ǫ. But, this time in a very small interval using greater step size is shown in the Fig. 7(a,b).  

 

 
FIG. 6. Extended region of (a) Bifurcation diagram, (b) Lyaponuv spectrum in a green box of fig. 6(a). 

 

We have also demonstrate the period doubling cascades by plotting the phase portraits shown in the 

Fig. (8). To do this, we keep fixed the parameter μ1,μ2 and we have slightly change the coupling co-efficient ǫ. 

In the phase portraits it is obvious that system through periodic and non-periodic region, as ǫ increases. The 

value of the period doubling cascades are tabulated as follows. 

 

 
 

IV. Experimental Study 
Dynamical system (3) can be implemented as an electronic circuit shown in the fig.(9). Fig. 9(a) present the 
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FIG. 7. Phase portraits values of ǫ, showing period doubling cascades. The values are tabulated in Table-I. 

 

Circuit diagram and fig. 9(b) is the laboratory realization circuit. Each indivitual oscillator shown in the 

red frame and is built using two capacitors, five resistors and two multipliers AD633 which introduces 

nonlinearity. The coupling is introduced by the resistors R7,R10,R11,R12 and the parameter R7 which is the 

controlling device. 

Applying kirchoff’s laws through A,B,C,D and we can 

 

 
FIG. 8. Experimental circuit schematic of the two mutually coupled Van der Pol oscillator. 
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FIG. 9. Experimentally observed Phase portraits for different values of R7, Showing the period doubling 

cascades 

 

write the following two equations, 

 

 
 

In the above Eq. (6) equate to the equation number (2) the parameter are taken to adjust the resistor and 

capacitor values are ω2 

0 = 1 

R1R2R7C2 and μ1,2 = 1 

R1C1!0 and the coupling co-efficient are ǫ = R11 

R7R10R12C1. But in our numerical study we have taken the parameter value’s and μ1=2.5, μ2=5.5 and the 

coupling co-efficient is the control parameter. So, if our convenience we choose our experimental resistance and 

capacitance value’s as follows 

R4,R5 = 10K ,R1,R6,R8−12 = 10K  , R3 = 1K , C1,C2 = 10 nF and the control parameter R7 varies from 0-150 

K  for the period doubling cascades. Such parameters let us show down experimental circuit to observe the 

phase portraits in HP Agilent 54601A 100MHz 4 Channel Oscilloscope. In the numerical analysis we have to 

determine the period doubling cascades in the very narrow regions. So, our experimental setup the resistance 

values are very short to observe phase portraits. The control parameter R7 is the value of 100K to 101K for the 

full length of period doubling cascades are occur. 

 

V. Conclusion 
To summarize, this paper describes the dynamics of two mutually coupled autonomous Van der pol 

oscillator realized by electronic circuit. We investigate the property of the anticipatory synchronization, 

existance of the chaotic attractor and the quasiperiodicity and it confirmed by bifurcation diagram, lyaponuv 

spectrum and power spectrum analysis,similarity functions, etc,. The existance of chaotic attractor also realized 

by numerical and realtime hardware experimental. In this study explores the mismatches of the relaxation 

oscillation of the two oscillator gives to choatic nature when they are mutually coupled. If the two oscillator 

having no mismatches then the two systems are synchronized this is also verified numerical as well as 

experimental. Extent the study to network of bidirectionally (mutually) coupled AVO’s. We hope to devolope 

coupled AVO’s in our nonlinear electronics laboratory suitably to perform the coupled dynamics of AVOs 

studies. 
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