Synthesis and structural characterization of Sm doped Ni-Cd Nano Ferrites by Citrate-Gel Auto combustion method

Shyamsunder Goud¹, Nakiraboina Venkatesh¹, Nama Hari Kumar², B. Rambabu¹, T. Somaiah³, P. Veera Somaiah⁴, B. Ravinder Reddy

¹Department of chemistry, Osmania University, Hyderabad, 500007 - India.
²Department of Physics, Osmania University, Hyderabad, 500007 - India.
³University College of Engineering, Osmania University, Hyderabad, 500007 - India.

Abstract: Ferrite nano particles of basic composition Ni₀.₅₂Cd₀.₅₀SmₓFe₂O₄(0.0 ≤ x ≤ 0.5, X=0.1) where synthesized by citrate-gel auto combustion method have investigated. X-ray diffraction profile indicates that the samples are in single phase structure for the sample without Sm content. For the samples with Sm ions, some diffraction peaks appeared which belongs to the orthorhombic phase structure further, the XRD have been used calculated the lattice parameter, density and grain size. The particle size of the starting powder composition varied from 35nm to 46nm. The values of lattice parameter (a) decreased and X-ray density (dx) increased with the increase of Sm content. Morphology of the prepared samples by citrate-gel method was studied using scanning electron microscope (SEM). The elemental analysis of all the Ni-Cd-Sm ferrite samples with different compositions was analyzed by Energy Dispersive Spectrometer (EDS). The observed results can be explained on the basis of composition and crystal size.

Keywords: citrate-gel auto combustion method, X-ray diffraction, SEM, EDS.

I. Introduction

Magnetic nano particles have received special attention over the last years. This nano particles are widely used in high density magnetic recording[1] Their low cost, high saturation magnetization high curie temperature and hysteresis loop properties make then excellent candidates for high-density recording media, absorbents, and microwave devices [2] the nano magnetic particles have special properties as compared to the bulk because of the large volume fraction that atoms occupy at the grain boundary area, which in turn is responsible for several unusual properties like spin canting, surface anisotropy, super paramagnetism (sp), dislocations etc. This makes them quite flexible to tailor the material for specific applications [3] Ferrites are extensively used in many kinds of magnetic devices such as transformers, inductors, magnetic heads, in resonance circuits for high frequency [4] The interesting physical and chemical properties of the ferrites arise from their distribute the cations among the tetrahedral (A) and octahedral (B) sites [5] Magnetic Resonance Imaging (MRI), Target drug delivery Hyperthermia for cancer treatment [6,7] high density storage devices, magnetic fluids [8,9] It was found that all rare-earth ions favor the occurrence of second phase, resulting in an increase of the electrical resistivity and bulk density. The electronic valence of the rare-earth ions is most important for compound formation. In general, rare-earth ions are most stable when they cations, where Ce and Tb are both trivalent and tetravalent while Sm, Dy are divalent and trivalent[10] owing to their large radius compared to that of Fe³⁺ ions, the lattice will be distorted, generating internal stress and increasing the lattice constant. For the composition with orthorhombic second phase, the lattice constant is slightly smaller than un substituted ferrite and will decrease with the increase of rare-earth ion radius which suggests the existence of solubility limit for rare-earth ions[11] Several methods are used for synthesizing nano sized spinel ferrites, such as co-precipitation, sol-gel, micro-emulsion, hydrothermal and reverse micelle [12-14], Refluxing process [15], Ceramic Method [16], Hydro Thermal Method [17], Combustion Method [18], Spark Plasma Sintering [19] and ball milling method etc. In the present work we reported the results of synthesis and structural properties of Ni-Cd-Sm Ferrites by non conventional citrate gel auto combustion method.

II. Experimental

Synthesis: The composition of Ni-Cd-Sm Ferrite particles having chemical formula Ni₀.₅₂Cd₀.₅₀SmₓFe₂O₄(0.0 ≤ x ≤ 0.5, X= 0.1) where synthesized by citrate-gel auto combustion method at low temperature. Nickel Nitrate, Cadmium Nitrate, Samarium Nitrate, Ferric Nitrate, Citric acid and ammonia (All chemicals are 99% pure AR Grade SDFCL sd Fine chemical Ltd) are raw materials for the synthesis process. Calculated quantities of metal nitrates and citric acid were dissolved in minimum amount of distilled water to get clear solution. Here citric acid acts as a chelating agent and helps in the homogenous distribution of metal ions. The above mixture was
stirred to get homogenous clear solution which is heated to 80ºC using a hot plate magnetic stirrer. Then the pH
of the solution is adjusted at 7 by addition of ammonia. A sol is formed. The resulting solution was evaporated
to dryness heating at about 180ºC on a hot plate with continuous stirring. The gel gave a fast flameless auto
combustion reaction with the evolution of large amount of gases which results a burned powder. The burned
powder was grinding using Agate Mortar and pestle to get a fine ferrite powder. Finally the grinded powder was
calcinated in air at 500ºC for 4 hours and cooled to room temperature.

Characterization: The structural characterization of the synthesized samples was carried out by Philips X-ray
diffactometer using Cu Kα radiation of wavelength 1.5405 Å at room temperature by continuous scanning in
the range of Bragg’s angles 10⁰ to 80⁰ in steps of 4⁰/minute to investigate the phase and crystalline size. Micro
structural analysis of the prepared samples was carried out by Scanning Electron Microscopy (SEM) and
elemental compositional analysis for all samples was done by Energy Dispersive Spectroscopy (EDS).

III. Results and Discussion

XRD Analysis

The X-ray Diffraction pattern of all the samples was shown in fig (1) which confirms the single phase
cubic spinal structure formation without any impurity peak. For The samples with Sm ions, some diffraction
peaks (such as 020, 110, 112, 113 and 301) appeared which belong to the orthorhombic phase structure this new
phase was formed beside the spinel phase; the strongest reflection has come from (311) peak for every sample.
The crystalline size of all samples was calculated from the Half Width at Full Maximum (HWFM) of the (311)
reflection peak in the XRD pattern using Debye–Scherer’s formula [20].

Scherrer Formula:

Crystalline size of the sample

\[D = \frac{0.94\lambda}{\beta \cos \theta} \]

Where \(\lambda \) =wavelength of X-ray used

\(\beta \) = Full Width Half Maxima (FWHM) in radians.

\(\theta \) = peak position.

Lattice parameter (a) of the sample was calculated by the formula

\[a = d \cdot (h^2 + k^2 + l^2)^{1/2} \]

Where \(a \) = Lattice Constant

\(hkl \) are the Miller Indices

\(d \) = inter planner spacing.

The X-ray density \(\rho = \frac{nM}{a^3N} \ [g/cm^3] \ [21] \]

Where \(M \) = molecular weight of the sample

\(n \) = number of molecules in a unit cell of spinel lattice

\(a \) = lattice parameter and \(N \) is the Avogadro number.

The Volume of the Unit Cell \(V = a^3 \)

![Fig (1). XRD Pattern of Sm substituted Ni Cd nano Ferrite](image-url)
Values of Crystallite size, lattice parameter, X-ray density and volume of all the samples were given in the table(1).

<table>
<thead>
<tr>
<th>S.No</th>
<th>Sample</th>
<th>Mol. wt (gm/mol)</th>
<th>Crystallite size (nm)</th>
<th>Lattice constant (Å)</th>
<th>X-ray density (gm/cc)</th>
<th>Volume (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ni₀.₃Cd₀.₅Fe₂O₄</td>
<td>249.511</td>
<td>28.03</td>
<td>8.490</td>
<td>0.541</td>
<td>611.960</td>
</tr>
<tr>
<td>2</td>
<td>Ni₀.₃Cd₀.₅Sm₀.₁Fe₂O₄</td>
<td>253.305</td>
<td>31.57</td>
<td>8.469</td>
<td>0.553</td>
<td>607.430</td>
</tr>
<tr>
<td>3</td>
<td>Ni₀.₃Cd₀.₅Sm₀.₂Fe₂O₄</td>
<td>257.099</td>
<td>27.21</td>
<td>8.369</td>
<td>0.582</td>
<td>599.077</td>
</tr>
<tr>
<td>4</td>
<td>Ni₀.₃Cd₀.₅Sm₀.₃Fe₂O₄</td>
<td>260.893</td>
<td>40.52</td>
<td>8.378</td>
<td>0.589</td>
<td>588.059</td>
</tr>
<tr>
<td>5</td>
<td>Ni₀.₃Cd₀.₅Sm₀.₄Fe₂O₄</td>
<td>264.687</td>
<td>46.46</td>
<td>9.056</td>
<td>0.473</td>
<td>742.692</td>
</tr>
<tr>
<td>6</td>
<td>Ni₀.₃Cd₀.₅Sm₀.₅Fe₂O₄</td>
<td>268.481</td>
<td>36.17</td>
<td>9.058</td>
<td>0.479</td>
<td>742.938</td>
</tr>
</tbody>
</table>

From the table we can observe that the crystallite size of the prepared samples were in the range of 35nm to 46nm. Value of lattice constant is increasing with samarium doping (expect for sample with X = 0.2) which shows the expansion of unit cell with rare earth doping. This is expected due to Cd²⁺ ions (0.97 Å) large ionic radius with substitution of small ionic radius of Sm³⁺ ions (0.964 Å). Decreases in ‘a’ value with Sm³⁺ concentration for sample with X = 0.2 suggests the occupancy of rare-earth ion in B – sites. The crystal size is decreasing with increase in Sm concentration, which is similar to the reported results [22, 23, 24]. X-ray density is increasing with doping which is due its dependence on molecular weight.

SEM Analysis
Micro structural analysis determines the average grain size and the type of grain growth of samples. Which influence the magnetic properties of the materials. The SEM micrographs of various (Ni₀.₃Cd₀.₅ₓSmₓ) Fe₂O₄ samples as prepared and sintered at 400°C are shown in Fig 4. Average grain sizes of the samples are determined from these micro graphs. The average grain sizes of the samples increases due to the substitution of Sm³⁺. This increases in grain sizes may be attributed to the higher atomic mobility of sm. This may be due to the fact that the melting point of sm (1345.15K) is higher than that of Cd (594.05K). The grain size of the samples lies in the nano meter region have a spherical shape and narrow size distribution. SEM image revealed that with increasing in the Sm concentration, then the grain size has increased which is an evidence for the XRD analysis.

Fig (2). SEM Micro graphs of Ni Cd Sm nano ferrites

Elemental Analysis by EDS

DOI: 10.9790/5736-08523842 www.iosrjournals.org 40 |Page
The experimental analysis of all the Ni-Cd-Sm nano Ferrite sample with different composition was analyzed by Energy Dispersive Spectrometer (EDS) and the elemental % atomic% different Elements shown in the table 3 the EDS pattern of sample s with \(X = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 \) were shown in the fig 3 which indicates the Elemental and atomic composition in the sample. The compounds show the presence of Ni, Cd, Sm, Fe and O without precipitating cation.

Table 2: Elements of each sample composition analyzed by (% weight) obtained by EDS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ferrite Composition</th>
<th>Ni</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Ni}{0.3}\text{Cd}{0.5}\text{Fe}_2\text{O}_4)</td>
<td>9.48</td>
<td>5.25</td>
<td>8.98</td>
<td>2.66</td>
<td>0.00</td>
<td>0.00</td>
<td>27.36</td>
<td>58.52</td>
<td>54.28</td>
<td>33.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\text{Ni}{0.3}\text{Sm}{0.1}\text{Cd}_{0.5}\text{Fe}_2\text{O}_4)</td>
<td>9.42</td>
<td>5.26</td>
<td>5.28</td>
<td>1.02</td>
<td>6.30</td>
<td>4.00</td>
<td>25.29</td>
<td>56.92</td>
<td>52.71</td>
<td>32.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\text{Ni}{0.3}\text{Sm}{0.2}\text{Cd}_{0.5}\text{Fe}_2\text{O}_4)</td>
<td>9.21</td>
<td>7.28</td>
<td>5.47</td>
<td>3.84</td>
<td>12.75</td>
<td>6.43</td>
<td>25.46</td>
<td>56.90</td>
<td>47.70</td>
<td>31.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\text{Ni}{0.3}\text{Sm}{0.3}\text{Cd}_{0.5}\text{Fe}_2\text{O}_4)</td>
<td>7.93</td>
<td>5.06</td>
<td>0.68</td>
<td>0.23</td>
<td>20.00</td>
<td>4.98</td>
<td>25.13</td>
<td>55.76</td>
<td>46.26</td>
<td>33.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\text{Ni}{0.3}\text{Sm}{0.4}\text{Cd}_{0.5}\text{Fe}_2\text{O}_4)</td>
<td>0.92</td>
<td>0.47</td>
<td>0.92</td>
<td>0.47</td>
<td>62.17</td>
<td>21.98</td>
<td>19.81</td>
<td>62.37</td>
<td>16.08</td>
<td>14.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\text{Ni}{0.3}\text{Sm}{0.5}\text{Cd}_{0.5}\text{Fe}_2\text{O}_4)</td>
<td>5.51</td>
<td>3.83</td>
<td>0.46</td>
<td>0.17</td>
<td>28.90</td>
<td>7.85</td>
<td>22.27</td>
<td>56.82</td>
<td>42.86</td>
<td>31.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Conclusions

Diffraction pattern of the Ni Cd Sm nano Ferrites conform the formation of single phase structure for the sample without Sm content. For the samples with Sm ions, some diffraction peaks appeared which belongs to the orthorhombic phase structure. Crystallite size of the Ni-Cd-Sm nano Ferrites was in the range of 35 nm to 46 nm which indicates the nano crystalline size. Lattice parameter increasing and experimental density of the prepared sample were decreases with composition.

References

[1]. G. Bate, magnetic recording materials since 1975, magn. magn. mater 100(1991) 413 – 423
Synthesis and structural characterization of Sm doped Ni-Cd Nano Ferrites by Citrate-Gel

[23] Zhau Lijun, Yang Hua,Yu Lianxiang, Cui Yuming,Zhao Xueping,Yan Yu, Feng Shouhua, The studies of nano crystalline NiFe2O4, Mn O0.3Nd0.7Fe2O4, Ferrites, Physics letters A 332(2004) 268- 274.