# ZnO Nanoparticles (ZnO-NPs): Synthesis Using *Tithonia diversifolia*, Characterization and *in-vitro*Antimicrobial Bioassays

Bonface Juma Wafula<sup>\*1</sup>, Eric Masika<sup>1</sup> and Charles Onindo<sup>1</sup>

<sup>1</sup>Department of Chemistry, Kenyatta University, Kenya

\* Corresponding author

# Abstract

ZnO is among leading metal oxide nanoparticles (MO-NPs). The conventional physical and chemical synthesis protocols require use of sophisticated equipment and many chemicals which may be hazardous. In this research, ZnO-NPs were prepared via a straightforward environmentally benign technique; employing Tithonia diversifolia as a reductant. Zinc nitrate solution was mixed with TDLE in the ratio of 3:1 respectively and incubated in an ultra-sonication bath. The precipitates were centrifuged at 5000 rpm for 15 minutes followed by washing with distilled water. A peak at 374 nm, as measured by UV-Vis, confirmed formation of nano-ZnO.Presence of ZnO was shown by a new peak at 668.35 cm<sup>-1</sup> in the ZnO-TDLE FTIR spectrum. The crystalline size of the sample was estimated as 20.91 nm by Debye-Scherer formula. Identification and quantification of elements was performed by X-Ray Fluorescence (XRF) analysis, which showed 91.823% Zn in the sample. The synthesized nano-ZnO showed promising antibacterial activity. The bioactive nature of ZnO-NPs, as demonstrated in this research, puts the nano-ZnO at pole position for the formulation of novel antimicrobial agents.

Keywords: antimicrobial activity; Tithonia diversifolia; XRD; X-Ray Fluorescence; ZnO-NPs

Date of Submission: 01-08-2020

Date of Acceptance: 16-08-2020

# I. Introduction

ZnO is currently among the most fascinating MO-NPs [1, 2]because of its unique chemical and physical properties [3]. No wonder, it is applied widely[4]in fields such as nanomedicine [5],chemistry, agriculture [6],environment [7]and technology. Consequently, there is need of exploring new synthesis protocols; besides establishing a cutting-edge understanding of its properties.

Physical methods of synthesizing MO-NPsare well established but their utilization to fullness has remained elusive due to requirement of sophisticated equipment and scaling-up challenges. Although chemical methods are cheaper, fast and easy to scale up; but they involve use of many reagents [8, 9]. Biological synthesis which is considered eco- friendly [1-2, 4-7], fast, clean[10] and less-costly [11] is currently being explored. Plant extracts, living matter residue, wastes, bacteria and fungi have been found to aid in formation of ZnO-NPs as reducing and stabilizing agents. Synthesis aided by plant extracts is preferred [9] because(i) plant extracts can be found in plenty, (ii) it is easier scaling up production and (iii) it is a one-step synthesis.

Plants contain phytochemicals [4, 7] that act as reductants as well as stabilizing agents [11]. Using environmentally benign materials [12-13] like leaf extract for synthesis of safer and biocompatible MO-NPs [1] is gaining currency. ZnO NPs of various shape, size and properties have been synthesized. In one research, zinc acetate and *Azadirachta indica* yielded nano-ZnO (25 nm) [14].Mushtaq and coworkers synthesized ZnO-NPs (14.18 nm) using *Rubia cordifolia*[15]. The synthesized NPs wereactive against *S. aureus* and *E. coli*. These studies have proven the efficacy of plant extracts as reductants [16]in synthesis of MO-NPs.

The demand for cheaper, safer and biocompatible ZnO-NPs overwhelmingly outstrips the current supply. Use of plants as reductants for synthesizing MO-NPs has emerged as a favorite area of research. Various plants such as *Moringa oleifera*[1],*Calotropis gigantean* [6],*Pentatropis capensis*[10],*Pongamia pinnata*[13], and *Camellia sinesis*[17]have been used to prepare ZnO-NPs; it will be interesting to see how *T. diversifolia* would assist in the preparation of ZnO-NPs.

This research thus deals with rapid preparation of ZnO-NPsusing TDLE and evaluation of their antimicrobial properties. Surge in drug resistance and emergence of infectious diseases, calls for urgent formulation of novel MO-NPs as bioactive agents [16-18].

## 2.1 Materials

# **II.** Materials and Methods

*T. diversifolia* was randomly sourced fromMt. Elgon, Kenya. Zinc nitrate hexahydrate and NaOH (analytical grade) were obtained from Merck Co. Dimethyl sulphoxide (DMSO) was purchased locally.



Photo 1: Tithonia diversifolia (photo taken by Bonface Juma)

## 2.2 Methods

# 2.2.1 Preparation of Leaf Extract of Tithonia diversifolia

The extract was prepared following the protocol employed in past research [19]. The leaves were washed with distilled water and dried overnight at 70°C. They were then ground into powder and 8 g of the crushed sample dissolved in 100 ml of distilled water in 250 ml round-bottomed flask. The mixture was heated at 70°C for half an hour. It was cooled and then filtered to obtain TDLE which was preserved at about 2°C.

# 2.2.2 Preparation of nano-ZnO Particles

Exactly 150 ml of zinc nitrate (0.06 M) was briefly agitated and 50 ml of TDLE (mixing ratio of 3:1) added followed by drops of 2M NaOH to raise pH to 10. The mixture was incubated in an ultra-sonication bath at 80°C. After 2h, the precipitate was washed three times in a centrifuge (5000 rpm for 15 minutes). It was dried at 100°C for 24 h and stored at room temperature.

#### 2.2.3 Characterization of the Samples

Properties of nano-ZnO were studied by XRD [15, 20], UV-Vis [9, 21], FTIR[4] and XRF [21].

#### 2.2.4 Antibacterial Bioassays

The antibacterial bioassay was performed by agar disc diffusion method [1]. Discs were soaked in 150  $\mu$ l[15]ZnO suspension (in 0.5% dimethyl sulphoxide) and placed onto agar plates containing the microbes. The plates were stored at 37 °C for 24 h [1]. Positive controls (Gentamicin, Ampicillin, Penicillin, Streptomycin and Ciprofloxacin) and negative controls (TDLE and DMSO) were used. Zone diameters were measured using a ruler. The bioassays were carried out in triplicate.

#### 3.1 Colour Changes

# III. Results

When colourless zinc nitrate was added to dark brown TDLE, the mixture turned to green yellow within five minutes signifying possible conversion of Zn (II) ions to Zn [10]. After 2 h the mixture eventually turned to an off-white colour, an indication of nano-ZnO formed.



Figure 1: Synthesis of ZnO NPs using TDLE; I- TDLE, II- incubation in a sonicator, III- after 2 h and IVsynthesized ZnO NPs.

### 3.2 UV-Vis Analysis

Formation of MO-NPs can be confirmed by UV-Vis measurements [21]. In this study, UV-Vis Spectrophotometer model SPECORD 200 PLUS (analytikjena), Germany model was used.Under optimized conditions, maximum absorption ( $\lambda_{max}$ ) was observed at 374.0 nm. This is in line with previous studies involving synthesis of ZnO-NPs, where  $\lambda_{max} = 372.0$  nm [9] was observed. In another research, similar results were obtained where  $\lambda_{max}$  was found to be at 370.0 nm [22]. The energy band gap (3.316 eV) was determined using equation 1 [9]. This value agrees with the theoretical band gap of ZnO which is reported as 3.37 [23].

Time was used to optimize the reaction; whereby increase in time from 10-120 minutes led to sharpening of peaks [5]. A sharp peak with high absorbance was realized at 120 minutes. Alkaline solutions are known to aid faster formation of small-sized NPs. In this work, increase of pH from 8-10 was accompanied by sharpening of peaks and increase in absorbance. Maximum absorbance was realized at pH=10. Increasing concentration of  $Zn(NO_3)_2$  from 0.06 to 0.1 M witnessed increase in peak broadening. Thus, increasing  $Zn^{2+}$  beyond threshold [5] hinders formation of ZnO-NPs. Mixing  $Zn(NO_3)_2$  and TDLE in the ratio of 3:1 respectively resulted into a sharp peak with increased absorbance. Mass of TDLE per 100 ml of water witnessed a sharp peak and higher absorbance at 8g.



Figure 2:Spectrum (UV-Vis) of ZnO-TDLE-NPs; a. at different reaction times and b. at optimized conditions



Figure 3: Optimization of parameters; i. pH, ii. concentration of Zn(NO<sub>3</sub>)<sub>2</sub>, iii. mixing ratios and iv. mass of *T. diversifolia*per 100 ml water

#### 3.3FTIR Characterization

The FTIR spectrum was scanned from 4000 cm<sup>-1</sup> to 500 cm<sup>-1</sup> using FTIR spectrophotometer model IRTracer (SHIMADZU). The shifting, disappearance, broadening and emergence of new peaks revealed participation of phytochemicals in the synthesis of ZnO-NPs. A strong IR peak at 3282.9 cm<sup>-1</sup> assigned to –OH stretch[19]shifted to 3428.53 cm<sup>-1</sup>. There was emergence of a new small peak at 2359.95 cm<sup>-1</sup>. A peak at 1634.7 cm<sup>-1</sup>, assigned to C= C, shifted to a lower wavenumber of 1560.44 cm<sup>-1</sup>. New peaks emerged at 668.35, 918.13 and 1029.04 cm<sup>-1</sup> which could be assigned to ZnO stretch.



## 3.4XRD

The synthesized nano-ZnO was hexagonal wurtzite [21] and highly crystalline with crystalline size estimated as 20.91 nm (from most intense peak) using Debye-Scherer formula [5, 20].

| Table 1: Summarized properties of ZnO-TDLE-NPS |                                    |  |  |
|------------------------------------------------|------------------------------------|--|--|
| Lattice parameters                             | a=3.22461Å, b=3.22461Å, c=5.19180Å |  |  |
| Angles                                         | α=90°, β=90°, γ=120°               |  |  |
| Space group number and name                    | 186, P63mc                         |  |  |

# Table 1: Summarized properties of ZnO-TDLE-NPs



#### 3.5X-Ray Fluorescence Analysis

XRF was used for identification and quantification of elements in the sample, whereby 91.823% was assigned to Zn. The high content of Zn in the sample is a clear indication of complete reduction of zinc nitrate to ZnO-NPs and also absence of impurities. This research, in fact, reports a much higher content of Zn compared to 14.96% reported earlier by Khaing and co-workers [21].

| 00884-GeoCh   | em.pdz   | AssayTime | 18: 01/04/2019 13:16:37 ElapsedTime: 18 |          |            |  |
|---------------|----------|-----------|-----------------------------------------|----------|------------|--|
| Alloy 1:      |          |           | ~                                       | atch No: |            |  |
| Field Info    |          |           |                                         |          |            |  |
| Operator      | USER     |           | tab no                                  |          | 1          |  |
| refference    | ZOTPLE O | PS 3      | Name                                    |          |            |  |
|               |          |           |                                         |          |            |  |
| Element blace | -        | ~         |                                         |          | - ( - (+-) |  |
| Element Marn  | e Min    | ~         | max                                     |          | -7-1-3     |  |
| MgO           | 0        | 0.        | 000                                     | 0        | 2.065      |  |
| A1203         | 0        | 0.        | 504                                     | 0        | 0.272      |  |
| 5102          | 0        | 0.        | 480                                     | 0        | 0.163      |  |
| -205          | 0        | 0.        | 000                                     | 0        | 0.178      |  |
| 61            | 0        | 0.        | 000                                     | 0        | 0.177      |  |
| 100           | 0        | 0.        | 054                                     | 0        | 0.017      |  |
| CaO           | 0        | 0.        | 152                                     | 0        | 0.023      |  |
| TI            | 0        | 0.        | 045                                     | 0        | 0.012      |  |
| ×             | 0        | 0         | 031                                     | 0        | 0.010      |  |
| Cr            | 0        | 0.        | 072                                     | 0        | 0.009      |  |
| Mo            | 0        | 0.        | 000                                     | 0        | 0.000      |  |
| Fe            | 0        | 0.        | 000                                     | 0        | 0.000      |  |
| Co            | 0        | 0.        | 000                                     | 0        | 0.025      |  |
| NI            | 0        | 0.        | 184                                     | 0        | 0.058      |  |
| Cu            | 0        | 0.        | 000                                     | 0        | 0.019      |  |
| Zn            | 0        | 91        | .823                                    | 0        | 0.754      |  |
| As            | 0        | 0.        | 000                                     | 0        | 0.007      |  |
| Se            | 0        | 0.        | 000                                     | 0        | 0.005      |  |
| Rb            | 0        | 0.        | 000                                     | 0        | 0.006      |  |
| Sr            | 0        | 0.        | 000                                     | 0        | 0.007      |  |
| Y             | 0        | 0.        | 000                                     | 0        | 0.005      |  |
| 25            | 0        | 0.        | 000                                     | 0        | 0.006      |  |
| ND            | 0        | 0.        | 000                                     | 0        | 0.011      |  |
| Mo            | 0        | 0.        | 305                                     | 0        | 0.027      |  |
| Pd            | 0        | 0.        | 000                                     | 0        | 0.003      |  |
| Ag            | 0        | 0.        | 000                                     | 0        | 0.014      |  |
| Cd            | 0        | 0.        | 000                                     | 0        | 0.026      |  |
| Sn            | 0        | 0.        | 000                                     | 0        | 0.005      |  |
| sb            | 0        | 0.        | 000                                     | 0        | 0.046      |  |
| Ba            | 0        | 0.        | 000                                     | 0        | 0.145      |  |
| La            | 0        | 0.        | 000                                     | 0        | 0.404      |  |
| Ce            | 0        | 0.        | 514                                     | 0        | 0.074      |  |
| HI            | 0        | 0.        | 000                                     | 0        | 0.031      |  |
| Ta            | 0        | 0.        | 000                                     | 0        | 0,166      |  |
| w             | 0        | 0         | 000                                     | 0        | 0.296      |  |
| Pt            | 0        | 0         | 000                                     | 0        | 0.078      |  |
| Au            | 0        |           | 515                                     | 0        | 0.447      |  |
| He            | 0        | 0         | 000                                     | 0        | 0.025      |  |
| TI            | 0        | 0         | 000                                     | 0        | 0.015      |  |
| Ph            | 0        | 0.        | 000                                     | 0        | 0.015      |  |
| P11           | 0        | 0.        | 000                                     | 0        | 0.009      |  |
| Th            | 0        | 0.        | 000                                     | 0        | 0.018      |  |
|               |          | 0.        |                                         |          | 0.028      |  |

### Table 2: Elemental analysis of ZnO-TDLE NPs by XRF

### 3.6Antimicrobial Potential of the Synthesized ZnO NPs

One-way ANOVA was used to analyze data using JASP software version 0.12.2. The highest activity (mm) was reported against *B. subtilis* (14.0±1), a Gram positive while the lowest was reported against *S. typhi*(6.67±0.58), a Gram negative. The activity of ZnO-NPs against *E. coli*was reported as 10.6±0.58 mm; this agrees well with results earlier reported [24]. It is interesting to note that the current research observed higher antibacterial activity than previous studies done by Fatimah (2018) [20] and Meruvu et al. (2011) [25]. Elsewhere, researchers analyzed antimicrobial potential of ZnO NPs against *E. coli* using agar well diffusion [15]. They obtained zone inhibitions of 12, 14 and 15 mm at 70, 100 and 150 µl of ZnO NPs respectively.

| Tuble et Tillibueteriur broubbuyb |                                                                                                                                                                           |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zonediameter±SD (mm)              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |
| B. subtilis                       | S. aureus                                                                                                                                                                 | E. coli                                                                                                                                                                                                                                                        | S. typhi                                                                                                                                                                                                                                                                                                                                                                            |
| $14.0\pm1^{f}$                    | $8.67{\pm}0.58^{h}$                                                                                                                                                       | 10.6±0.58 <sup>g</sup>                                                                                                                                                                                                                                         | $6.67 \pm 0.58^{i}$                                                                                                                                                                                                                                                                                                                                                                 |
| 31.67±0.58 <sup>a</sup>           | 31.0±1 <sup>a</sup>                                                                                                                                                       | 30.33±0.58 <sup>a</sup>                                                                                                                                                                                                                                        | 26.33±1.53 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                             |
| $20.7 \pm 0.58^{d}$               | 23.67±0.58°                                                                                                                                                               | 15.0±1 <sup>e</sup>                                                                                                                                                                                                                                            | 16.67±0.58 <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                             |
| 21.33±1.53 <sup>cd</sup>          | 21.33±2.31°                                                                                                                                                               | 15.0±1 <sup>e</sup>                                                                                                                                                                                                                                            | 17.0±1 <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                 |
| -                                 | 7.0±1.73 <sup>h</sup>                                                                                                                                                     | -                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                 | 6.67±1.16 <sup>h</sup>                                                                                                                                                    | -                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                 | -                                                                                                                                                                         | -                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                 | -                                                                                                                                                                         | -                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   | Zonediameter±SD (m<br><i>B. subtilis</i><br>14.0±1 <sup>f</sup><br>31.67±0.58 <sup>a</sup><br>20.7±0.58 <sup>d</sup><br>21.33±1.53 <sup>cd</sup><br>-<br>-<br>-<br>-<br>- | Zonediameter±SD (mm)           B. subtilis         S. aureus $14.0\pm1^{1}$ $8.67\pm0.58^{h}$ $31.67\pm0.58^{a}$ $31.0\pm1^{a}$ $20.7\pm0.58^{d}$ $23.67\pm0.58^{c}$ $21.33\pm1.53^{cd}$ $21.33\pm2.31^{c}$ - $7.0\pm1.73^{h}$ - $6.67\pm1.16^{h}$ -         - | Zonediameter±SD (mm)           B. subtilis         S. aureus         E. coli $14.0\pm1^{1}$ $8.67\pm0.58^{h}$ $10.6\pm0.58^{d}$ $31.67\pm0.58^{a}$ $31.0\pm1^{a}$ $30.33\pm0.58^{a}$ $20.7\pm0.58^{d}$ $23.67\pm0.58^{c}$ $15.0\pm1^{e}$ $21.33\pm1.53^{cd}$ $21.33\pm2.31^{c}$ $15.0\pm1^{e}$ - $7.0\pm1.73^{h}$ -           - $6.67\pm1.16^{h}$ -           -         -         - |

Table 3: Antibacterial bioassays

-: No antibacterial activity reported.

Note: means followed by the same superscript (a-i) in the same column or row are not significantly different as determined by one-way ANOVA at 95% confidence levels.



Graph 1: Antimicrobial activity of ZnO-TDLE-NPs and its Control Treatments



Plate 1: Zone of inhibition of ZnO-NPs, Streptomycin, Penicillin, Ampicillin, Ciprofloxacin, Gentamicin, TDLE and DMSO against- S.a (S. aureus), B.s (B. subtilis), E.c (E. coli) and S.t (S. typhi)

## **IV. Discussion**

Size, shape, chemical composition and even the type of plant extract used determine the efficacy of MO-NPs inhibiting growth of microbes. *T. diversifolia* has been demonstrated to aid in the formation of ZnO-NPs (20.91 nm) with antimicrobial potential.ZnO-NPs are much smaller as compared to bacteria

[26];consequently, it is much easier for them to stick to the cell membrane of bacteria, damaging it and eventually death of the cell. Formation of ROS ( $H_2O_2$ ,  $OH^-$ ,  $O_2\&O_2^-$ ) is thought to be the main antibacterial activity mechanism [27]. ROS species react with H<sup>+</sup> to yield  $H_2O_2$ [26] which can easily cross into the cell via the cell membrane. The entry of  $H_2O_2$  into the bacteria cell compromises the genetic materials; eventually the cell dies.

| ruble it comparison studies |                         |             |                                    |               |  |
|-----------------------------|-------------------------|-------------|------------------------------------|---------------|--|
| Method                      | Precursors              | Crystalline | Antimicrobial activity (mm)        | References    |  |
|                             |                         | size (nm)   |                                    |               |  |
| Biological                  | Zinc nitrate, Tithonia  | 20.91       | S. aureus-8.67, B. subtilis-14, E. | Current study |  |
| -                           | diversifolia            |             | coli-10.6, S. typhie-6.67          |               |  |
| Biological                  | Zinc nitrate, Rubia     | 14.18       | S. aureus-15, E. coli-15           | [15]          |  |
| -                           | cordifolia              |             |                                    |               |  |
| Biological                  | Zinc acetate dihydrate, | 17.76       | S. aureus-7.3, E. coli-7.6         | [20]          |  |
| -                           | rice bran               |             |                                    |               |  |
| Chemical                    | Zinc acetate,           | 30.00       | B. subtilis-8, E. coli-7           | [25]          |  |
| (Precipitation)             | ammonium carbonate      |             |                                    |               |  |

|       |    | <b>a</b> . |           |
|-------|----|------------|-----------|
| Table | 4: | Compariso  | n studies |

#### V. Conclusion

A 'green' method for preparation of ZnO-NPs through bio-reduction of  $Zn^{2+}$  using TDLE was demonstrated. FTIR confirmed participation of phytochemicals as reductants. The obtained nano-ZnO was highly crystalline with crystalline size of 20.91 nm. The synthesized ZnO-NPs particles showed promising antimicrobial potential.

#### Acknowledgements

We acknowledge Ms. Jane Mburu and Ms. Catherine Wanja, both of the department of Chemistry at Kenyatta University, Kenya for their guidance during laboratory work.

#### References

- [1]. Pal, S., Mondal, S., Maity, J., & Mukherjee, R. (2018). Synthesis and characterization of ZnO nanoparticles using *Moringa oleifera* leaf extract: investigation of photocatalytic and antibacterial activity. *International Journal of Nanoscience and Nanotechnology*, 14(2), 111–119.
- [2]. Kalpana, V. N., Rajeswari, V. D., & Fanizzi, F. P. (2018). A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018, 12. https://doi.org/10.1155/2018/3569758
- Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
- [4]. Fakhari, S., Jamzad, M., & Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. *Green Chemistry Letters and Reviews*, 12(1), 19–24. https://doi.org/10.1080/17518253.2018.1547925
- [5]. Jamdagni, P., Khatri, P., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbortristis and their antifungal activity. Journal of King Saud University - Science, 30(2), 168–175. https://doi.org/10.1016/j.jksus.2016.10.002
- [6]. Chaudhuri, S. K., & Malodia, L. (2017). Biosynthesis of zinc oxide nanoparticles using leaf extract of *Calotropis gigantea*: Characterization and its evaluation on tree seedling growth in nursery stage. *Applied Nanoscience (Switzerland)*, 7(8), 501–512. https://doi.org/10.1007/s13204-017-0586-7
- [7]. Bharati, R., & Suresh, S. (2017). Biosynthesis of ZnO/SiO<sub>2</sub> nanocatalyst with palash leaves' powder for treatment of petroleum refinery effluent. *Resource-Efficient Technologies*, 3(4), 528–541. <u>https://doi.org/10.1016/j.reffit.2017.08.004</u>
- [8]. Gudikandula, K., & Charya Maringanti, S. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. *Journal of Experimental Nanoscience*, *11*(9), 714–721. https://doi.org/10.1080/17458080.2016.1139196
- [9]. Happy, A., Soumya, M., Venkat Kumar, S., Rajeshkumar, S., Sheba Rani, N. D., Lakshmi, T., & Deepak Nallaswamy, V. (2019). Phyto-assisted synthesis of zinc oxide nanoparticles using *Cassia alata* and its antibacterial activity against *Escherichia coli*. *Biochemistry and Biophysics Reports*, 17(December 2018), 208–211. <u>https://doi.org/10.1016/j.bbrep.2019.01.002</u>
- [10]. Surekha, K., Abirami, R., Prasidhee, V., & Jacob, S. J. P. (2017). Green synthesis of zinc oxide nanoparticle using *Pentatropis capensis* and its anti-proliferative activity. *Indian Journal of Natural Products and Resources*, 8(4), 316–321.
- [11]. Jain, N., Bhargava, A., & Panwar, J. (2014). Enhanced photocatalytic degradation of methylene blue using biologically synthesized "protein-capped" ZnO nanoparticles. *Chemical Engineering Journal*, 243, 549–555. https://doi.org/10.1016/j.cej.2013.11.085
- [12]. Patil, B. N., & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against *Mycobacterium tuberculosis*. *International Journal of Mycobacteriology*, 5(2), 197–204. https://doi.org/10.1016/j.ijmyco.2016.03.004
- [13]. Sundrarajan, M., Ambika, S., & Bharathi, K. (2015). Plant-extract mediated synthesis of ZnO nanoparticles using *Pongamia pinnata* and their activity against pathogenic bacteria. *Advanced Powder Technology*, 26(5), 1294–1299. https://doi.org/10.1016/j.apt.2015.07.001
- [14]. Oudhia, A., Kulkarni, P., & Sharma, S. (2015). Green Synthesis of ZnO nanotubes for Bioapplications. Proceedings of BITCON-2015-International Journal of Advanced Engineering Research and Studies, 280–281.
- [15]. Mushtaq, A., Patel, R., Singh, N., Negi, D. S., & Rawat, S. (2017). Green synthesis of zinc oxide nanoparticles using Rubia cordifolia root extract against different bacterial pathogens. Indo American Journal of Pharmaceutical Research, 7(9), 759–765
- [16]. Uikey, P., & Vishwakarma, K. (2016). Review of zinc oxide (ZnO) nanoparticles applications and properties. In International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) (Vol. 21).
- [17]. Shah, R. K., Boruah, F., & Parween, N. (2015). Synthesis and Characterization of ZnO Nanoparticles using Leaf Extract of *Camellia sinesis* and Evaluation of their Antimicrobial Efficacy. In *Int.J.Curr.Microbiol.App.Sci* (Vol. 4, Issue 8). <u>http://www.ijcmas.com</u>

- [18]. Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., & Rotello, V. M. (2014). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 8(10), 10682–10686. https://doi.org/10.1021/nn5042625
- [19]. Yedurkar, S., Maurya, C., & Mahanwar, P. (2016). Biosynthesis of Zinc Oxide Nanoparticles Using *Ixora coccinea* Leaf Extract-A Green Approach. Open Journal of Synthesis Theory and Applications, 5, 1–14. <u>https://doi.org/10.4236/ojsta.2016.51001</u>
- [20]. Fatimah, I. (2018). Biosynthesis and characterization of ZnO nanoparticles using rice bran extract as low-cost templating agent. Journal of Engineering Science and Technology, 13(2), 409–420.
- [21]. Khaing, M. M., Kyaw Thu, M., Kyaw, T., Tin, T., & Lwin, T. (2018). Green Synthesis of Zinc Oxide Nanoparticles Using Tropical Plants and Their Characterizations. *International Journal of Scientific & Engineering Research*, 9(8), 1627–1632. http://www.ijser.org
- [22]. Paul, S., & Kumar Ban, D. (2014). Synthesis, characterization and the application of ZnO Nanoparticles in biotechnology. International Journal of Advances in Chemical Engineering and Biological Sciences, 1(1). https://doi.org/10.15242/ijacebs.c1113015
- [23]. Ahmad, Z., Ullahkha, F., Mahmood, S., & Mahmood, T. (2018). Different approaches for the synthesis of zinc oxide nanoparticles. In Open J. Chem (Vol. 1, Issue 1).
- [24]. Hajiashrafi, S., & Motakef-Kazemi, N. (2018). Green synthesis of zinc oxide nanoparticles using parsley extract. Nanomedicine Research Journal, 3(1), 44–50. <u>https://doi.org/10.22034/NMRJ.2018.01.007</u>
- [25]. Meruvu, H., Vangalapati, M., Chaitanya Chippada, S., & Rao Bammidi, S. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against *Bacillus subtilis* and *Escherichia coli. Rasayan Journal of Chemistry*, 4(1), 217– 222.
- [26]. Ibrahem, E. J., Yasin, Y. S., & Jasim, O. K. (2017). Antibacterial activity of zinc oxide nanoparticles against *Staphylococcus aureus* and *Pseudomonas aeruginosa* isolated from burn wound infections. *Cihan University-Erbil Scientific Journal*, 2017(Special-2), 265–277. https://doi.org/10.24086/cuesj.si.2017.n2a24
- [27]. Zhang, Y., Nayak, T., Hong, H., & Cai, W. (2013). Biomedical applications of zinc oxide nanomaterials. Current Molecular Medicine, 13(10), 1633–1645. https://doi.org/10.2174/1566524013666131111130058

Bonface Juma Wafula, et. al. "ZnO Nanoparticles (ZnO-NPs): Synthesis Using *Tithonia diversifolia*, Characterization and *in-vitro*Antimicrobial Bioassays." *IOSR Journal of Applied Chemistry (IOSR-JAC)*, 13(8), (2020): pp 14-21.