Synthesis: Antioxidant and Antiproliferative Activities of Novel Quinazolinone Derivatives

Nagwa S. Abd El-Dayem ${ }^{1}$, Mohamed A. Mostafa ${ }^{2}$, Seham Y. Hassan ${ }^{2}$, Galila A. Yacout ${ }^{3}$ and Mohamed M. El Sadek ${ }^{2}$
${ }^{1}$ (Chemistry Department, Faculty of Applied Health Sciences Technology/ Pharos University in Alexandria, Egypt)
${ }^{2}$ (Chemistry Department, Faculty of Science/ Alexandria University, Egypt)
${ }^{3}$ (Biochemistry Department, Faculty of Science/ Alexandria University, Egypt)

Abstract

: Background: The recent literature reveals that the quinazolinone moiety associated with various aromatic as well as heterocyclic compounds possess wide range of pharmacological properties. Materials and Methods: The chemical structures of the synthesized compounds were confirmed on the basis of their spectral data (FT-IR, ${ }^{1} H N M R,{ }^{13}$ CNMR, mass spectra). Antioxidant activity of quinazolinones was determined by diphenyl picryl hydrazyl (DPPH) assay method. Antiproliferative activity of quinazolinones was determined against three cancer cell lines (MCF-7, HCT and HepG-2). Results: One-pot Biginelli reaction of 5,5-dimethylcyclohexane-1,3-dione (dimedone), thiourea and a variety of aldehydes; afforded octahydroquinazolinone derivatives. Treatment of one of them with ethyl bromoacetate, displayed ethyl 2-(quinazolin-2-ylthio)acetate derivative. Moreover, octahydroquinazolinone derivatives on reflux with hydrazine hydrate furnished the hydrazine derivatives. Condensation of these hydrazines with a number of formyl derivatives gave the corresponding hydrazones. On the other hand, cyclization of one of hydrazine derivatives with acetic acid, afforded the [1,2,4]triazolo-[3,4-b]quinazolin-6-one. The prepared compounds were examined as antioxidants that determined in terms of $E C_{50}$ values as well as antiproliferative against cancer cell lines; HepG-2, HCT and MCF-7 in terms of $I C_{50}$. Conclusion: new synthesized quinazolinones showed high antioxidant activity compared to vitamin E as well as moderate antiproliferative activity as compared to Doxorubicin, Doxorubicin and Vinblastine standards.

Key Word: Dimedone; Triazole; Pyrazoloquinoxaline; Quinazolinone; antioxidant; antiproliferative; DPPH; scavenging and cancer cell lines.

I. Introduction

3,4-Dihydropyrimidin- $2(1 \mathrm{H})$-ones, named Biginelli compounds and their derivatives have received a great deal of attention, due to their therapeutic and pharmaceutical properties, such as anti-inflammatory [1], antibacterial [2-5], antitumor [6,7], antifungal [2,3,8], antitubercular [2] activities. Moreover, dihydropyrimidinones have been used as calcium channel blockers [9] as well as a calcium antagonist [10-12]. Furthermore, some alkaloids containing the dihydropyrimidine core unit possess a diversity of useful biological effects; among these are the batzelladine alkaloids, which were found to be potent HIV gp-120-CD4 inhibitors [13-15]. Octahydroquinazolinones found to be bioactive analogues because of their potential antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa [16-19], as well as a calcium antagonist [16-18,20]. In this work some new quinazolinone derivatives were synthesized and tested for their antioxidant and antiproliferative activities. In the same time these compounds can be used as bases for nucleoside preparation. The current study aims to synthesize new quinazolinone derivatives and test their activities as antioxidant and antiproliferative.

II. Material And Methods

Chemistry Part, melting points were determined with a Melt-temperature apparatus and are uncorrected. TLC was performed on Baker-Flex silica gel 1B-F plates and the spots were detected by UV light absorption. IR spectra were recorded on Perkin Elmer. USA Spectrometer. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR were recorded on JEOL JNM ECA 500 MHz (faculty of Science, Alexandria University, Alexandria, Egypt) and 300 MHz (Jordan University, Amman, Jordon) using tetramethyl-silane as an internal standard. Mass spectra and elemental analyses were recorded on GCMS solution DI Analysis Shimadzu Qp-2010 Plus, at the faculty of

Science, Cairo University, Cairo, Egypt. Solutions were evaporated under diminished pressure unless otherwise stated. The ChemDraw-Ultra-8.0 has been used in generating the nomenclature of the prepared compounds.

Procedure methodology (Chemistry part)

Biginelli reaction.General Method [21]. A mixture of 5,5-dimethylcyclohexan-1,3-dione (dimedone) (1.428 $\mathrm{mmol})$, aromatic aldehyde $(1.428 \mathrm{mmol})$ and thiourea $(1.428 \mathrm{mmol})$ in absolute ethanol $(4 \mathrm{~mL})$ in presence of concentrated hydrochloric acid ($37 \%, 0.4 \mathrm{~mL}$) was refluxed and monitored by TLC, The solid product was filtered off, washed with ammonium hydroxide solution then with water.
4-(2-Chlorophenyl)-1,2,3,4,7,8-hexahydro-7,7-di-methyl-2-thioxoquinazolin-5(6H)-one 1. It was recrystallized from ethanol as colorless needles.
1,2,3,4,7,8-Hexahydro-7,7-dimethyl-4-(3-nitro-phenyl)-2-thioxoquinazolin-5(6H)-one 2. It was recrystallized from ethanol as colorless needles.
1,2,3,4,7,8-Hexahydro-7,7-dimethyl-4-(4-nitro-phenyl)-2-thioxoquinazolin-5(6H)-one 3. It was recrystallized from ethanol as colorless needles.
4-(4-Bromophenyl)-1,2,3,4,7,8-hexahydro-7,7-di-methyl-2-thioxoquinazolin-5(6H)-one 4. It was recrystallized from ethanol as white needles.
1,2,3,4,7,8-Hexahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)-2-thioxoquinazolin-5(6H)-one 5. It was recrystallized from methanol as white needles.
1,2,3,4,7,8-Hexahydro-7,7-dimethyl-4-(1-phenyl-1H-pyrazolo[4,3-b]quinoxalin-3-yl)-2-thioxoquina-zolin$5(6 H)$-one 6 . It was recrystallized from dioxane as canary yellow crystals.

Ethyl
2-(3,4,5,6,7,8-hexahydro-7,7-dimethyl-5-oxo-4-(2-phenyl-2H-1,2,3-triazol-4-yl)quina-zolin-2ylthio)acetate 7. A mixture of 1,2,3,4,7,8-hexahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)-2-thioxoquinazolin- $5(6 H)$-one $5(1.416 \mathrm{mmol})$, ethyl bromoacetate $(1.416 \mathrm{mmol})$ and anhydrous potassium carbonate (5.664 mmol) in dry acetone (30 mL) was refluxed for 5 hours, then it was filtered off, the filtrate was evaporated as yellow syrup. It was recrystallized from ethanol as yellow syrup.

Reaction of 2-thioxo-quinazolin-5(6H)-one 2, 4, 5 with hydrazine hydrate. General Method. A suspension of 2-thioxo-quinazolin- $5(6 H)$-one $\mathbf{2 , 4} 4$ and $5(10 \mathrm{mmol})$ in hydrazine hydrate $(99 \%, 20 \mathrm{~mL})$ was stirred under reflux for 8 hours; the solid precipitated was filtered off, washed with ethanol and dried.
2-Hydrazinyl-3,4,7,8-tetrahydro-7,7-dimethyl-4-(3-nitrophenyl)quinazolin-5(6H)-one 8. It was recrystallized from ethanol as yellow needles.
4-(4-Bromophenyl)-2-hydrazinyl-7,8-dihydro-7,7-dimethylquinazolin-5(1H,4H,6H)-one 9. It was recrystallized from ethanol as yellow needles.
2-hydrazinyl-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)quinazolin-5(6H)-one 10. It was recrystallized from ethanol as yellow crystals.

Reaction of hydrazines $\mathbf{8}$ and $\mathbf{1 0}$ with aromatic aldehydes. General Method. A suspension of hydrazine compound $(0.285 \mathrm{mmoL})$ in ethanol $(5 \mathrm{~mL})$ was treated with aromatic aldehyde $(0.285 \mathrm{mmoL})$ under reflux for 3 hours; the solid precipitated was filtered off, washed with ethanol and dried.
2-Hydrazinyl-N-(3-phenylallylidene)-3,4,7,8-tetra-hydro-7,7-dimethyl-4-(3-nitrophenyl)-quinazolin-5(6H)-one
11, it was obtained from compound 8 and cinnamaldehyde. It was recrystallized from ethanol as yellow crystals. 2-Hydrazinyl-N-[(p-methoxyphenyl-4-yl)methyl-ene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(3-nitro-phenyl)-
quinazolin-5(6H)-one 12, it was obtained from compound $\mathbf{8}$ and 4-methoxybenzaldehyde. It was recrystallized from ethanol as yellow crystals.
2-Hydrazinyl-N-[(2-phenyl-2H-1,2,3-triazol-4-yl)-methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(3-nitro-
phenyl)quinazolin-5(6H)-one 13, it was obtained from compound 8 and 2-phenyl-2H-1,2,3-triazole-4carbaldehyde. It was recrystallized from dimethyl formamide as yellow needles.
2-Hydrazinyl-N-[(2-chlorophenyl-1-yl)methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-
triazol-4-yl)quinazolin-5(6H)-one 14, it was obtained from compound $\mathbf{1 0}$ and o-chlorobenz-aldehyde. It was recrystallized from ethanol as yellow needles.
2-Hydrazinyl-N-[(3-nitrophenyl-1-yl)methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol4 -yl)quinazolin- $5(6 H)$-one 15, it was obtained from compound $\mathbf{1 0}$ and m-nitrobenzaldehyde. It was recrystallized from ethanol as yellow needles.
2-Hydrazinyl-N-[(4-nitrophenyl-1-yl)methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol4 -yl)quinazolin- $5(6 H)$-one 16, it was obtained from compound 10 and p-nitrobenzaldehyde. It was recrystallized from ethanol as yellow crystals.

2-Hydrazinyl-N-[(4-bromophenyl-1-yl)methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)quinazolin-5(6H)-one 17, it was obtained from compound 10 and p-bromobenzaldehyde. It was recrystallized from ethanol as off white needles.
2-Hydrazinyl-N-[(2-phenyl-2H-1,2,3-triazol-4-yl)-methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-
1,2,3-triazol-4-yl)quinazolin-5(6H)-one 18, it was obtained from compound 10 and 2-phenyl- 2 H -1,2,3-triazole-4-carbaldehyde. It was recrystallized from ethanol as yellow crystals.
2-Hydrazinyl-N-[(1-phenyl-1H-pyrazolo[4,3-b]-quinoxalin-3-yl)methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)quina-zolin-5(6H)-one 19, it was obtained from compound 10 and 1-phenyl-1H-pyrazolo[4,3-b]-quinoxaline-3-carbaldehyde. It was recrystallized from ethanol-DMF as red crystals.
2-Hydrazinyl-N-[(2-methyl- N^{\prime}-(2-oxoindolin-3-ylidene)furan-3-carbohydrazide-5-yl)-methylene]-3,4,-7,8-tetra-hydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)-quinazolin-5(6H)-one 20, it was obtained from compound 10 and 5-formyl-2-methyl- N^{\prime}-(2-oxoindolin-3-ylidene)furan-3-carbo-hydrazide. It was recrystallized from ethanol as yellow crystals.

8,9-Dihydro-3,8,8-trimethyl-5-(2-phenyl-2H-1,2,3-triazol-4-yl)-[1,2,4]triazolo-[3,4-b]-quinazolin-6(5H-
,7H,10H)-one 21. A mixture of 2-hydrazinyl-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)quinazolin- $5(6 \mathrm{H})$-one $10(1.424 \mathrm{mmoL})$ and acetic acid $(15 \mathrm{~mL})$ was refluxed for 5 hours, the reaction mixture was cooled. The separated solid was filtered off, and dried. It was recrystallized from methanol as yellow crystals.

Materials (Antiproliferative screening)

Mammalian cell lines: MCF-7 cells (human breast cancer cell line were obtained from VACSERA Tissue Culture Unit. Chemicals Used: diphenyl picryl hydrazyl (DPH), Dimethyl sulfoxide (DMSO), crystal violet and trypan blue dye were purchased from sigma (St. Louis, Mo., USA). Fetal Bovine serum, DMEM (Dulbecc'o Modefied Eagle's Medium), RPMI-1640, HEPES buffer solution, L-glutamine, gentamycin and 0.25% Trypsin-EDAT were purchased from Lonza. Crystal violet (1%): composed of 0.5% (W/V) crystal violet and 50% methanol, then made up to volume dd $\mathrm{H}_{2} \mathrm{O}$ and filtered through a whatmann No. 1 filter paper.

Cell line propagation:

The cells were propagated in (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 1% L-glutamine, HEPES buffer and $50 \mu \mathrm{~g} / \mathrm{mL}$ gentamycin. All cells were mentained at $37^{\circ} \mathrm{C}$ in humidified atmosphere with $5 \% \mathrm{CO}_{2}$ and were subcultured two times a week. Cell toxicity was monitored by determining the effect of the examined compound on cell morphology and cell viability.

Cytotoxicity evaluation using viability assay:

For cytotoxicity assay, the cells were seeded in 96 -well plate at a cell concentration of $1 * 10^{4}$ cell per well in $100 \mu \mathrm{~L}$ of growth medium. Fresh medium containing different concentrations of the test sample was added after 24 hours of seeding. Serial two-fold dilutions of the tested chemical compound were added to confluent cell monolayers dispensed into 96 -well, flat-bottomed microtiter plates (Falcon, NJ, USA) using a multichannel pipette. The microtiter plates were incubated at $37^{\circ} \mathrm{C}$ in a humidified incubator with $5 \% \mathrm{CO}_{2}$ for a period of 48 hour. Three wells were used for each concentration of each tested sample. Control cells were incubated without test sample and with or without DMSO. After incubation of the cells for 24 hours at $37^{\circ} \mathrm{C}$, various concentrations of each sample ($50,25,12.5,6.25,3.125$ and $1.56 \mu \mathrm{~g}$) were added each separately. The incubation was continued for 48 hours and viable cells yield was determined colorimetrically using MTTB (3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide). The water insoluble tetrazolium salt is converted to purple formazon by the mitochondrial dehydrogenase of viable cells. After the end of incubation period, media were aspirated and the crystal violet solution (1%) was added to each well for at least 30 minutes. The stain was removed and plates were rinsed using tap water until all excess stain is removed. Glacial acetic acid (30%) was then added to all wells and mixed thoroughly, then the absorbance of the plates were measured after gently shaken on Microplate Reader (TECAN, inc.), using a test wavelength of 490 nm . All results were corrected for background absorbance detected in wells without added stain. Treated samples were compared with the cell control in the absence of the tested compounds. All experiments were carried out in the triplicate. The cell cytotoxic effect of each tested compound was calculated $[29,30]$.

III. Result

A. Chemical analysis

Table no 1. Mass, IR, ${ }^{1} \mathrm{H}$ NMR spectral data of compounds $\mathbf{1 - 2 1}$.

$\begin{aligned} & \text { Com } \\ & \text { p. no. } \end{aligned}$	Mass (m/z) (\%)	$\operatorname{IR}\left(\gamma, \mathrm{cm}^{-1}\right)$	${ }^{1} \mathrm{H}$ NMR ($\mathbf{\delta}, \mathrm{ppm}$)(DMSO-d ${ }_{6}$)
1	---	$\begin{gathered} 3232(2 \mathrm{NH}), 1668(\mathrm{C}=\mathrm{O}), \\ 1625(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 1.01,1.04\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.32(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2(1)}\right), 3.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), $5.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-methine), 7.08-7.10 (m, $1 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{d})}\right)$, 7.27-7.29 (m, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{b}, \mathrm{c})}\right)$, 7.47-7.49 (m, 1H, Ar- $\left.\mathrm{H}_{(\mathrm{a})}\right), 10.97$ (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
2[25]	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right] 333(9.0)} \\ {\left[\mathrm{M}^{+}+1\right]} \\ 332(44.4) \\ {\left[\mathrm{M}^{+}\right] 331(5.3)} \end{gathered}$	$\begin{gathered} 3212(2 \mathrm{NH}), 1676(\mathrm{C}=\mathrm{O}), \\ 1615(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.93,1.03\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.35(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.55 \mathrm{~Hz}\right), 2.61(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2(1)}, J 17.55 \mathrm{~Hz}\right), 3.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), 5.65 (s, $1 \mathrm{H}, \mathrm{CH}-m e t h i n e), 7.62\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{d})}, J 7.65 \mathrm{~Hz}\right), 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{c})}, J 7.65 \mathrm{~Hz}\right), 8.08-8.10\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{b}, \mathrm{a})}\right), 10.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
3[25]	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 333} \\ (19.9),\left[\mathrm{M}^{+}+1\right], \\ 332(100.0),\left[\mathrm{M}^{+}\right], \\ 331(35.3) . \end{gathered}$	$\begin{gathered} 3190(2 \mathrm{NH}), 1669(\mathrm{C}=\mathrm{O}), \\ 1628(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.90,1.01\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.32(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.61 \mathrm{~Hz}\right), 2.57(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}_{2(1)}, J 17.61 \mathrm{~Hz}$), 3.37 (s, 1H, NH with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), 5.59 (s, $1 \mathrm{H}, \mathrm{CH}$-methine), 7.50 (d, 2 H, Ar- $\mathrm{H}_{(\mathrm{b})}, J 8.40 \mathrm{~Hz}$), 8.16 (d, $2 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{a})}, J 8.40 \mathrm{~Hz}\right), 10.96\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
$\begin{gathered} \mathbf{4}[17, \\ 18,26 \\ , 27] \end{gathered}$	------	$\begin{gathered} 3245(2 \mathrm{NH}), 1669(\mathrm{C}=\mathrm{O}), \\ 1622(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.90,1.01\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.31$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.61 \mathrm{~Hz}\right), 2.55(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.61 \mathrm{~Hz}\right), 3.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), 5.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-m e t h i n e$), 7.18 (d, 2H, Ar-H $\mathrm{H}_{(\mathrm{b})}, J 8.40 \mathrm{~Hz}$), 7.49 (d, 2H, $\left.\mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, J 8.40 \mathrm{~Hz}\right), 10.86$ (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
5	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 355(15.0),} \\ {\left[\mathrm{M}^{+}+1\right], 354(54.8),} \\ {\left[\mathrm{M}^{+}\right], 353(23.6) .} \end{gathered}$	$\begin{gathered} 3190(2 \mathrm{NH}), 1676(\mathrm{C}=\mathrm{O}), \\ 1628(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 1.00,1.03\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.36(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.56 \mathrm{~Hz}\right), 2.61(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2(1)}, J 17.56 \mathrm{~Hz}\right), 3.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), $5.68(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}-m e t h i n e), 7.36\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{c}}, J 7.65 \mathrm{~Hz}\right), 7.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{b})}, J 7.65 \mathrm{~Hz}\right), 7.85\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, J 7.65 \mathrm{~Hz}\right), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ triazole), 10.92 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
6	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 456(21.0),} \\ {\left[\mathrm{M}^{+}+1\right], 455(69.3),} \\ {\left[\mathrm{M}^{+}\right], 454(2.7) .} \end{gathered}$	$\begin{gathered} 3224(2 \mathrm{NH}), 1669(\mathrm{C}=\mathrm{O}), \\ 1619(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 1.08,1.09\left(\mathrm{ss}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 15.30 \mathrm{~Hz}\right), 2.44-$ $2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2(2,1)}\right.$ with DMSO), $2.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.61 \mathrm{~Hz}\right)$, $3.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-m e t h i n e), 7.28\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{g})}, J\right.$ $7.65 \mathrm{~Hz}), 7.53\left(\mathrm{t}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{f})}, J 7.65 \mathrm{~Hz}\right), 7.79\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{d})}, J 7.65\right.$ $\mathrm{Hz}), 7.88\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{c})}, J 7.65 \mathrm{~Hz}\right), 8.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{b})}, J 9.15 \mathrm{~Hz}\right)$, 8.21 (t, 3H, Ar-H $\left.\mathrm{H}_{(\mathrm{e}, \mathrm{a})}, J 8.40 \mathrm{~Hz}\right), 11.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
7	----	$\begin{gathered} 3290(\mathrm{NH}), 1737\left(\mathrm{CO}_{2} \mathrm{Et}\right), \\ 1717(\mathrm{C}=\mathrm{O}), 1623(\mathrm{C}=\mathrm{N}), \\ 1602(\mathrm{C}=\mathrm{C}) . \end{gathered}$	${ }^{1} \mathrm{H} \quad$ NMR $\quad(\delta, \quad \mathrm{ppm}) \quad\left(\mathrm{CDCl}_{3}\right) \quad \delta: \quad 1.09, \quad 1.12 \quad\left(2 \mathrm{~s}, \quad 6 \mathrm{H}, \quad 2 \mathrm{CH}_{3^{-}}\right.$ quinazolinone), 1.21-1.27 (m, 5H, S-CH2, CH_{3}-ester), $2.34(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2(2)}$-quinazolinone), $2.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2(1)}\right.$-quinazolinone), $3.79(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.17-4.20 (m, 2H, CH_{2}-ester), 5.66 ($\mathrm{s}, 1 \mathrm{H}$, CH-methine), $7.28\left(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{c})}, J=7.65 \mathrm{~Hz}\right), 7.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{b}}\right)$, $J=7.65 \mathrm{~Hz}$), 7.77 (s, 1H, CH-triazole), $7.93\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, J=7.65\right.$ Hz).
8	----	$\begin{gathered} 3335 \& 3221\left(\mathrm{NH}, \mathrm{NH}_{2}\right), \\ 1648(\mathrm{C}=\mathrm{O}), 1610 \\ (\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}), \end{gathered}$	$\delta: 0.83,0.97\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 1.96(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.80 \mathrm{~Hz}\right), 2.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 16.80 \mathrm{~Hz}\right), 2.08(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2(1)}, J 16.06 \mathrm{~Hz}\right), 3.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), 5.13 (s, $1 \mathrm{H}, \mathrm{CH}$-methine), 5.64 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.36 (d, $\left.1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{d})}, J 6.90 \mathrm{~Hz}\right), 6.41\left(\mathrm{~d}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{c})}, J 7.65 \mathrm{~Hz}\right), 6.46(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{H}_{(\mathrm{b})}\right), 6.85\left(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{a})}, J 7.65 \mathrm{~Hz}\right), 8.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
9	$\begin{gathered} {\left[\mathrm{M}^{+}+1\right], 366,364(2.88} \\ 9.01),\left[\mathrm{M}^{+}\right], 365,363 \\ (9.57,40.41) . \end{gathered}$	$\begin{gathered} 3335 \& 3200\left(\mathrm{NH}, \mathrm{NH}_{2}\right), \\ 1658(\mathrm{C}=\mathrm{O}), 1624 \\ (\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.82,0.97\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2(2)}\right), 2.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}\right.$, $J 15.00 \mathrm{~Hz}), 2.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 15.00 \mathrm{~Hz}\right), 4.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $5.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-methine), $5.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $7.14\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{H}_{(\mathrm{b})}, J 9.00 \mathrm{~Hz}\right), 7.45\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, J\right.$ $9.00 \mathrm{~Hz}), 9.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
10	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 353} \\ (6.7),\left[\mathrm{M}^{+}+1\right], 352 \\ (22.2),\left[\mathrm{M}^{+}\right], 351(8.4) . \end{gathered}$	$\begin{gathered} 3327 \& 3259\left(\mathrm{NH}, \mathrm{NH}_{2}\right), \\ 1685(\mathrm{C}=\mathrm{O}), 1649(\mathrm{C}=\mathrm{N}), \\ 1605(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.94,1.00\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.19-$ $2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2(2,1)}\right), 2.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.60 \mathrm{~Hz}\right), 3.31(\mathrm{~s}, 1 \mathrm{H}$, NH with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 5.50 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-m e t h i n e$), $7.36\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{c}}, J 7.65 \mathrm{~Hz}\right.$), 7.51 (t, $2 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{b})}, J 7.65 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}\right.$ and CH-triazole), $9.79(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
11	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 445} \\ (80.39),\left[\mathrm{M}^{+}+1\right], 444 \\ (60.78),\left[\mathrm{M}^{+}\right], 443 \\ (50.98) . \end{gathered}$	$\begin{gathered} 3308-3181(2 \mathrm{NH}), \\ 1696(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{N}), \\ 1609(\mathrm{C}=\mathrm{C}) . \end{gathered}$
12	$\begin{gathered} {\left[\mathrm{M}^{+}+1\right], 448} \\ (78.23),\left[\mathrm{M}^{+}\right], 447 \\ (57.26) . \end{gathered}$	$\begin{gathered} 3305 \& 3227(2 \mathrm{NH}), \\ 1688(\mathrm{C}=\mathrm{O}), 1648(\mathrm{C}=\mathrm{N}), \\ 1603(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\cdots \cdots \cdots$
13	[$\left.\mathrm{M}^{+}+1\right], 485(66.67)$,	3319 (2NH), 1640 (C=O),	$\delta: 1.03,1.07\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 17.60 \mathrm{~Hz}\right), 2.28(\mathrm{~d}$,

	$\left[\mathrm{M}^{+}\right], 484$ (52.25).	1600 ($\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}$).	$\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 17.60 \mathrm{~Hz}\right), 2.43-2.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}\right.$ with DMSO), 3.09 (d, 1H, $\mathrm{CH}_{2(1)}, J 16.06 \mathrm{~Hz}$), 3.36 ($\mathrm{s}, 1 \mathrm{H}$, NH with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), 6.35 (s, 1H, CH-methine), 7.37-7.44 (m, 2H, Ar-H), 7.53-7.58 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.92$ (d, 2H, Ar-H, J 6.85 Hz), 8.02 (t, 2H, Ar-H, J 6.85 Hz), 8.51-8.52 ($\mathrm{ss}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$ and CH-triazole), $9.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
14	------	$\begin{aligned} & 3223(2 \mathrm{NH}), 1701(\mathrm{C}=\mathrm{O}), \\ & 1640(\mathrm{C}=\mathrm{N}), 1585(\mathrm{C}=\mathrm{C}) . \end{aligned}$	$\delta: 0.92,1.03\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J=16.00 \mathrm{~Hz}\right), 2.26$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J=16.00 \mathrm{~Hz}\right), 2.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J=17.56 \mathrm{~Hz}\right), 2.49$ (d, 1H, $\mathrm{CH}_{2(1)}, J=17.56 \mathrm{~Hz}$), 3.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), 6.38 (s, 1H, CH-methine), 7.35-7.39 (m, 3H, Ar-H ${ }_{(\mathrm{e}, \mathrm{fg})}$), 7.46 (dd, 1H, $\operatorname{Ar}-\mathrm{H}_{(\mathrm{d})}, J_{\mathrm{a}, \mathrm{d}}=7.65 \mathrm{~Hz}$ and $\left.J_{\mathrm{d}, \mathrm{f}}=1.55 \mathrm{~Hz}\right), 7.50\left(\mathrm{t}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{c})}, J=\right.$ $7.65 \mathrm{~Hz}), 7.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{b})}, J=7.65 \mathrm{~Hz}\right), 7.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, J_{\mathrm{a}, \mathrm{d}}\right.$ $=7.65 \mathrm{~Hz}$ and $\left.J_{\mathrm{a}, \mathrm{e}}=2.30 \mathrm{~Hz}\right), 8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-triazole), $8.78(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}), 10.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
15	------	$\begin{gathered} 3250 \& 3180(2 \mathrm{NH}), \\ 1708(\mathrm{C}=\mathrm{O}), \\ 1656(\mathrm{C}=\mathrm{N}), \\ 1619(\mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.90,1.03\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.28(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 17.60 \mathrm{~Hz}\right), 2.50(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2(1)}, J 17.60 \mathrm{~Hz}\right), 3.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), $6.49(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$-methine), $7.34\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{g})}, J 7.65 \mathrm{~Hz}\right), 7.48\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{f})}\right.$, $J 8.40 \mathrm{~Hz}), 7.68\left(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{e})}, J 8.40 \mathrm{~Hz}\right), 7.82\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{d})}, J\right.$ $8.40 \mathrm{~Hz}), 8.07\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{c})}\right), 8.15-8.19\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{b}, \mathrm{a})}\right), 8.56(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$-triazole), 8.63 (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 10.39 (s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
16	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 486} \\ (1.99),\left[\mathrm{M}^{+}+1\right], \\ 485(4.30),\left[\mathrm{M}^{+}\right], 484 \\ (1.16) . \end{gathered}$	$\begin{gathered} 3243 \& 3176(2 \mathrm{NH}), 1706 \\ (\mathrm{C}=\mathrm{O}), 1624(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.90,1.01\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.27(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 16.80 \mathrm{~Hz}\right), 2.45-2.51$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}$ with DMSO), 3.33 (s, 1 H , NH with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), $6.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-methine), $7.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{e})}, J 7.65 \mathrm{~Hz}\right), 7.46(\mathrm{t}, 2 \mathrm{H}$, Ar- $\left.\mathrm{H}_{(\mathrm{d})}, J 7.65 \mathrm{~Hz}\right), 7.80\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{c})}, J 7.65 \mathrm{~Hz}\right), 7.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{b})}, J 8.40 \mathrm{~Hz}\right), 8.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-triazole $), 8.22\left(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{a})}, J 8.40\right.$ $\mathrm{Hz}), 8.62$ (s, 1H, CH=N), 10.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
17	$\begin{gathered} {\left[\mathrm{M}^{+}+2\right], 519} \\ (2.88),\left[\mathrm{M}^{+}+1\right], 518 \\ (5.66),\left[\mathrm{M}^{+}\right], 517 \\ (3.16) . \end{gathered}$	$\begin{gathered} 3245 \& 3174(2 \mathrm{NH}), 1703 \\ (\mathrm{C}=\mathrm{O}), 1618(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.91,1.02\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.27(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 16.85 \mathrm{~Hz}\right), 2.46-2.51$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}$ with DMSO), $3.32\left(\mathrm{~s}, 1 \mathrm{H}\right.$, NH with $\mathrm{H}_{2} \mathrm{O}$ of DMSO), $6.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-methine), $7.35\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{e})}, J 7.65 \mathrm{~Hz}\right), 7.48(\mathrm{t}, 2 \mathrm{H}$, Ar-H $\left.{ }_{(\mathrm{d})}, J 7.65 \mathrm{~Hz}\right), 7.58\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{c})}, J 8.40 \mathrm{~Hz}\right), 7.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}_{(\mathrm{b})}, J 7.65 \mathrm{~Hz}\right), 7.82\left(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{a})}, J 8.40 \mathrm{~Hz}\right), 8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ triazole), $8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 10.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
18	$\begin{gathered} {\left[\mathrm{M}^{+}+1\right], 507} \\ (3.51),\left[\mathrm{M}^{+}\right], \\ 506(18.86) \end{gathered}$	$\begin{aligned} & 3211(2 \mathrm{NH}), 1689(\mathrm{C}=\mathrm{O}), \\ & 1654(\mathrm{C}=\mathrm{N}), 1600(\mathrm{C}=\mathrm{C}) . \end{aligned}$	$\delta: 0.89,1.03\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J=18 \mathrm{~Hz}\right), 2.29(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J=18 \mathrm{~Hz}\right), 2.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J=18 \mathrm{~Hz}\right), 2.85(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2(1)}\right), 4.67$ (s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 5.83 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-$ methine), $7.34\left(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{f})}, J 9.0 \mathrm{~Hz}\right), 7.41\left(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{e})}, J 9.0\right.$ $\mathrm{Hz}), 7.49\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{d})}, J 9.0 \mathrm{~Hz}\right), 7.54\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{c})}, J 9.0 \mathrm{~Hz}\right)$, $7.89\left(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}_{(\mathrm{b})}, J 9.0 \mathrm{~Hz}\right), 7.97(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar-H}(\mathrm{a}), J 9.0 \mathrm{~Hz}), 8.01(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-triazole $\left.{ }_{(4)}\right), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-triazole (3)), 9.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
19	$\begin{gathered} {\left[\mathrm{M}^{+}+1\right], 608} \\ (55.56),\left[\mathrm{M}^{+}\right], \\ 607(75.93) . \\ \hline \end{gathered}$	$\begin{gathered} 3239 \text { (2NH), } 1652(\mathrm{C}=\mathrm{O}), \\ 1600(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\ldots \ldots$.
20	$\begin{gathered} {\left[\mathrm{M}^{+}+1\right], 631} \\ (61.26),\left[\mathrm{M}^{+}\right], \\ 630(81.08) . \end{gathered}$	$\begin{gathered} 3217(2 \mathrm{NH}), 1688(\mathrm{CO}), \\ 1654(2 \mathrm{CONH}), 1621 \\ (\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.89,1.03\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J=18 \mathrm{~Hz}\right), 2.27(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2(2)}, J=18 \mathrm{~Hz}\right), 2.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J=15 \mathrm{~Hz}\right), 2.65(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}-furan), $2.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J=18 \mathrm{~Hz}\right.$), $4.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{(6)}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 5.81 (s, 1H, CH-methine), 6.91 (d, 1H, Ar-H-isatin ${ }_{(\mathrm{g})}$, $J 6.0 \mathrm{~Hz}), 7.06\left(\mathrm{t}, 1 \mathrm{H}\right.$, Ar-H-isatin ${ }_{(\mathrm{f})}, J 9.0 \mathrm{~Hz}$), $7.20(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CH}-$ furan), $7.34\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$-isatin ${ }_{(\mathrm{e})}$ and Ar-H-triazole ${ }_{(\mathrm{c})}$), $7.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-$ H-triazole ${ }_{(\mathrm{b})}, J 6.0 \mathrm{~Hz}$), $7.56(\mathrm{~d}, 1 \mathrm{H}$, Ar-H-isatin $(\mathrm{d}), J 6.0 \mathrm{~Hz}), 7.89(\mathrm{~d}$, 2 H, Ar-H-triazole $\left.{ }_{(\mathrm{a})}, J 9.0 \mathrm{~Hz}\right), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ triazole), $9.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{(5)}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $11.25\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}_{(4)}\right.$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 13.35 (bs, $1 \mathrm{H}, \mathrm{NH}_{(3)}, \mathrm{D}_{2} \mathrm{O}$ exchangeable).
21	$\begin{gathered} {\left[\mathrm{M}^{+}+1\right], 376} \\ (2.0),\left[\mathrm{M}^{+}\right], 375(1.2) . \end{gathered}$	$\begin{gathered} 3244(\mathrm{NH}), 1701(\mathrm{C}=\mathrm{O}), \\ 1625(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C}) . \end{gathered}$	$\delta: 0.96,1.02\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$-quinazolinone), $1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3^{-}}\right.$ triazole), $1.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06 \mathrm{~Hz}\right), 2.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(2)}, J 16.06\right.$ $\mathrm{Hz}), 2.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}, J 16.06 \mathrm{~Hz}\right), 2.46-2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2(1)}\right.$ with DMSO), 5.49 (s, 1H, CH-methine), 7.37 (t, 1H, Ar-H ${ }_{(\mathrm{c})}, J 7.65 \mathrm{~Hz}$), $7.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{b})}, J 7.65 \mathrm{~Hz}\right), 7.90\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, J 7.65 \mathrm{~Hz}\right), 7.95$ (s, 1H, CH-triazole), 9.98 (s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchangeable).

Table no 2. Physical constants of compounds 1-21.

Compound No.	Yield (\%)	M.p. (${ }^{(} \mathrm{C}$)	Mol. Form. (Mol. Wt.)	$\mathbf{R}_{\text {f }}$	Microanalysis (expected/found)		
					C	H	N
1	95%	256-257	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{OS} \\ 320.84 \end{gathered}$	$\begin{gathered} \text { 0.36(H: EA; } \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 59.90 \\ & 60.00 \end{aligned}$	$\begin{aligned} & 5.34 \\ & 5.28 \end{aligned}$	$\begin{aligned} & 8.73 \\ & 8.69 \end{aligned}$
2	97 \%	224-225	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \\ 331.39 \end{gathered}$	$\begin{aligned} & \text { 0.44(H: EA; } \\ & \text { 2:1; V/V) } \end{aligned}$	$\begin{aligned} & 57.99 \\ & 58.07 \end{aligned}$	$\begin{aligned} & 5.17 \\ & 5.11 \end{aligned}$	$\begin{aligned} & 12.68 \\ & 12.69 \end{aligned}$
3	93%	233-234	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \\ 331.39 \end{gathered}$	$\begin{gathered} \text { 0.36(H: EA; } \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 57.99 \\ & 57.90 \end{aligned}$	$\begin{aligned} & 5.17 \\ & 5.15 \end{aligned}$	$\begin{aligned} & 12.68 \\ & 12.71 \end{aligned}$
4	98%	230-231	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{OS} \\ 365.29 \end{gathered}$	$\begin{gathered} 0.40(\mathrm{H}: \mathrm{EA} ; \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 52.61 \\ & 52.55 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.60 \end{aligned}$	$\begin{aligned} & 7.67 \\ & 7.72 \end{aligned}$
5	94%	233-234	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS} \\ 353.44 \end{gathered}$	$\begin{gathered} \text { 0.32(H: EA; } \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 61.17 \\ & 61.20 \end{aligned}$	$\begin{aligned} & 5.42 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 19.81 \\ & 19.79 \end{aligned}$
6	94%	246-247	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{OS} \\ 454.55 \end{gathered}$	$\begin{aligned} & \text { 0.31(H: EA; } \\ & \text { 2:1; V/V) } \end{aligned}$	$\begin{aligned} & 66.06 \\ & 66.00 \end{aligned}$	$\begin{aligned} & 4.88 \\ & 4.91 \end{aligned}$	$\begin{aligned} & 18.49 \\ & 18.52 \end{aligned}$
7	98%	Yellow syrup	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S} \\ 439.53 \end{gathered}$	$\begin{aligned} & \text { 0.41(H: EA; } \\ & \text { 2:1; V/V) } \end{aligned}$	$\begin{aligned} & 60.12 \\ & 60.09 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 5.77 \end{aligned}$	$\begin{aligned} & 15.93 \\ & 15.95 \end{aligned}$
8	65 \%	>330	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3} \\ 329.35 \end{gathered}$	$\begin{aligned} & 0.45(\mathrm{C}: \mathrm{M} ; \\ & 10: 1 ; \mathrm{V} / \mathrm{V}) \end{aligned}$	$\begin{aligned} & 58.35 \\ & 58.40 \end{aligned}$	$\begin{aligned} & 5.81 \\ & 5.77 \end{aligned}$	$\begin{aligned} & 21.26 \\ & 21.30 \end{aligned}$
9	97 \%	265-266	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O} \\ 363.25 \end{gathered}$	$\begin{aligned} & \text { 0.78(C:M; } \\ & \text { 20:1; V/V) } \end{aligned}$	$\begin{aligned} & 52.90 \\ & 52.87 \end{aligned}$	$\begin{aligned} & 5.27 \\ & 5.17 \end{aligned}$	$\begin{aligned} & 15.42 \\ & 15.40 \end{aligned}$
10	98%	231-232	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O} \\ 351.41 \end{gathered}$	$\begin{aligned} & \text { 0.53(C:M; } \\ & \text { 15:1; V/V) } \end{aligned}$	$\begin{aligned} & 61.52 \\ & 61.58 \end{aligned}$	$\begin{aligned} & 6.02 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 27.90 \\ & 27.85 \end{aligned}$
11	98%	240-241	$\begin{gathered} \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4} \\ 447.19 \end{gathered}$	$\begin{gathered} 0.22 \text { (EA: H; } \\ 3: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 64.42 \\ & 64.37 \end{aligned}$	$\begin{aligned} & 5.63 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 15.65 \\ & 15.55 \end{aligned}$
12	98%	249-250	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \\ 443.2 \end{gathered}$	$\begin{gathered} 0.63 \text { (EA: H; } \\ 3: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 67.70 \\ & 67.75 \end{aligned}$	$\begin{aligned} & 5.68 \\ & 5.59 \end{aligned}$	$\begin{aligned} & 15.79 \\ & 15.73 \end{aligned}$
13	82 \%	239-240	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{3} \\ 484.51 \end{gathered}$	$\begin{aligned} & \text { 0.52(C:M; } \\ & \text { 10:1; V/V) } \end{aligned}$	$\begin{aligned} & 61.97 \\ & 62.00 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 5.05 \end{aligned}$	$\begin{aligned} & 23.13 \\ & 23.08 \end{aligned}$
14	89 \%	240-241	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{7} \mathrm{O} \\ 473.96 \end{gathered}$	$\begin{aligned} & \text { 0.57(H: EA; } \\ & \text { 2:1; V/V) } \end{aligned}$	$\begin{aligned} & 63.35 \\ & 63.28 \end{aligned}$	$\begin{aligned} & 5.10 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 20.69 \\ & 20.72 \end{aligned}$
15	99%	270-271	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{3} \\ 484.51 \end{gathered}$	$\begin{gathered} \text { 0.52(H: EA; } \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 61.97 \\ & 62.00 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 4.92 \end{aligned}$	$\begin{aligned} & 23.13 \\ & 23.06 \end{aligned}$
16	94%	293-294	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{3} \\ 484.51 \end{gathered}$	$\begin{gathered} \text { 0.57(H: EA; } \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 61.97 \\ & 62.03 \end{aligned}$	$\begin{gathered} 4.99 \\ 5.04 \end{gathered}$	$\begin{aligned} & 23.13 \\ & 23.23 \end{aligned}$
17	95%	267-268	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{BrN}_{7} \mathrm{O} \\ 518.41 \end{gathered}$	$\begin{gathered} \text { 0.59(EA: H; } \\ 2: 1 ; \mathrm{V} / \mathrm{V}) \end{gathered}$	$\begin{aligned} & 57.92 \\ & 57.90 \end{aligned}$	$\begin{aligned} & 4.67 \\ & 4.69 \end{aligned}$	$\begin{aligned} & 18.91 \\ & 18.95 \end{aligned}$
18	69 \%	213-214	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{10} \mathrm{O} \\ 506.56 \end{gathered}$	$\begin{aligned} & 0.75(\mathrm{C}: \mathrm{M} \\ & \text { 20:1; V/V) } \end{aligned}$	$\begin{aligned} & 64.02 \\ & 64.07 \end{aligned}$	$\begin{aligned} & 5.17 \\ & 5.23 \end{aligned}$	$\begin{aligned} & 27.65 \\ & 27.69 \end{aligned}$
19	98%	257-258	$\begin{gathered} \mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{11} \mathrm{O} \\ 607.67 \end{gathered}$	$\begin{aligned} & \text { 0.5(C: M; } \\ & 15: 1 ; \mathrm{V} / \mathrm{V}) \end{aligned}$	$\begin{aligned} & 67.20 \\ & 67.26 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 4.73 \end{aligned}$	$\begin{aligned} & 25.35 \\ & 25.30 \end{aligned}$
20	85%	224-225	$\begin{gathered} \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{O}_{4} \\ 630.66 \end{gathered}$	$\begin{aligned} & \text { 0.69(C:M; } \\ & \text { 10:1; V/V) } \end{aligned}$	$\begin{aligned} & 62.85 \\ & 62.81 \end{aligned}$	$\begin{aligned} & 4.79 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 22.21 \\ & 22.30 \end{aligned}$
21	87 \%	161-162	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O} \\ 375.43 \end{gathered}$	$\begin{aligned} & \text { 0.56(C:M; } \\ & \text { 15:1; V/V) } \end{aligned}$	$\begin{aligned} & 63.98 \\ & 64.00 \end{aligned}$	$\begin{aligned} & 5.64 \\ & 5.67 \end{aligned}$	$\begin{aligned} & 26.12 \\ & 26.16 \end{aligned}$

Table no 3. ${ }^{13} \mathrm{C}$ NMR spectral data of 2-Hydrazinyl- N-[(4-nitrophenyl-1-yl)methylene]-3,4,7,8-tetrahydro-7,7-dimethyl-4-(2-phenyl-2H-1,2,3-triazol-4-yl)quinazolin-5(6H)-one 16.

Tables no 4-9 and Figures no 1-5 show absorbance and free radical scavenging activities of synthesized compounds 1-6, 8-11, 14-20 and 21 compared with standard vitamin E.

Table no 4. Absorbance and free radical scavenging activities of Vitamine E, compounds 1-3.

Conc. (mg/ mL)	Vitamin E		Compound no. 1		Compound no. 2		Compound no. 3	

Table no 5. Absorbance and free radical scavenging activities of compounds 4-6, 8.

$\begin{gathered} \text { Conc. } \\ (\mathrm{mg} / \mathrm{mL}) \end{gathered}$	Compound no. 4		Compound no. 5		Compound no. 6		Compound no. 8	
	absorbance	$\begin{gathered} \% \\ \text { scavenging } \end{gathered}$	absorbance	$\begin{gathered} \% \\ \text { scavenging } \\ \hline \end{gathered}$	absorbance	scavenging	absorbance	$\%$ scavenging
0.150	0.615	35.93	0.696	27.50	0.656	31.66	0.500	47.91
0.300	0.580	39.58	0.665	30.72	0.635	33.85	0.455	52.60
0.450	0.502	47.70	0.631	34.27	0.593	38.22	0.439	54.27
0.600	0.465	51.56	0.600	37.50	0.572	40.41	0.422	56.04
0.750	0.400	58.33	0.589	38.64	0.525	45.31	0.375	60.93
0.900	0.375	60.93	0.570	40.62	0.488	49.16	0.317	66.97
1	0.317	66.97	0.557	41.97	0.465	51.56	0.266	72.29

Table no 6. Absorbance and free radical scavenging activities of compounds 9-11 and $\mathbf{1 4}$.

Conc. $(\mathbf{m g} / \mathbf{m L})$	Compound no. 9		Compound no. 10		Compound no. 11		Compound no. 14	
	absorbance	\% \% scavenging	absorbance	\% scavenging	absorbance	\% scavenging	absorbance	\% scavenging
0.150	0.776	19.16	0.465	51.56	0.700	27.08	0.523	54.00
0.300	0.722	24.79	0.439	54.27	0.656	31.66	0.405	57.81
0.450	0.684	28.75	0.422	56.04	0.617	35.72	0.400	58.33
0.600	0.635	33.85	0.375	60.93	0.589	38.64	0.380	60.41
0.750	0.572	40.41	0.317	66.97	0.565	41.14	0.325	66.14
0.900	0.525	45.31	0.296	69.16	0.499	48.02	0.275	71.35
1	0.488	49.16	0.237	75.31	0.455	52.60	0.201	79.06

Table no 7. Absorbance and free radical scavenging activities of compounds 15-18.

$\begin{gathered} \text { Conc. } \\ (\mathrm{mg} / \mathrm{mL}) \end{gathered}$	Compound no. 15		Compound no. 16		Compound no. 17		Compound no. 18	
	absorbance	$\begin{gathered} \% \\ \text { scavenging } \end{gathered}$	absorbance	$\begin{gathered} \% \\ \text { scavenging } \end{gathered}$	absorbance	scavenging	absorbance	scavenging
0.150	0.422	55.00	0.822	14.37	0.684	28.75	0.369	42.61
0.300	0.398	58.54	0.790	17.70	0.635	33.85	0.337	47.58
0.450	0.375	60.93	0.722	24.79	0.608	36.66	0.303	52.87
0.600	0.325	66.14	0.684	28.75	0.592	38.33	0.283	55.98
0.750	0.292	69.58	0.625	34.89	0.565	41.14	0.240	62.67
0.900	0.222	76.87	0.597	37.81	0.499	48.02	0.196	69.51
1	0.199	79.27	0.549	42.81	0.455	52.60	0.177	72.47

Table no 8. Absorbance and free radical scavenging activities of compounds 19-21.

Conc. $(\mathbf{m g} / \mathbf{m L})$	Compound no. 19		Compound no. 20		Compound no. 21	
	absorbance	\% scavenging	absorbance	\% scavenging	absorbance	\% scavenging
0.150	0.485	24.57	0.615	35.93	0.465	51.56
0.300	0.451	29.86	0.585	39.06	0.439	54.27
0.450	0.420	34.68	0.500	47.91	0.422	56.04
0.600	0.399	37.94	0.465	51.56	0.375	60.93
0.750	0.369	42.61	0.439	54.27	0.317	66.97
0.900	0.337	47.58	0.422	56.04	0.266	72.29
1	0.312	51.47	0.375	60.93	0.137	75.01

Table no 9. EC_{50} values of the prepared compounds 1-6, 8-11 and 14-21.

Compound no.	$\mathbf{E C}_{50}(\mathrm{mg})$	$\mathbf{C p d} \mathbf{n o}$	$\mathbf{E C}_{\mathbf{5 0}}(\mathrm{mg})$
Vitamine E	0.705	$\mathbf{1 1}$	0.925
$\mathbf{1}$	>1	$\mathbf{1 4}$	0.035
$\mathbf{2}$	0.220	$\mathbf{1 5}$	0.017
$\mathbf{3}$	0.525	$\mathbf{1 6}$	>1
$\mathbf{4}$	0.550	$\mathbf{1 7}$	0.933
$\mathbf{5}$	>1	$\mathbf{1 8}$	0.380
$\mathbf{6}$	0.952	$\mathbf{1 9}$	0.943
$\mathbf{8}$	0.275	$\mathbf{2 0}$	0.612
$\mathbf{9}$	1.025	$\mathbf{2 1}$	0.150
$\mathbf{1 0}$	0.140	\ldots	\ldots

Figure 1. Free radical scavenging activity of compounds 1-3

Figure 2. Free radical scavenging activity of compounds 4-6,8

Figure 3. Free radical scavenging activity of compounds 9-11 and 14 .

Figure 4. Free radical scavenging activity of compounds 15-18.

Figure 5. Free radical scavenging activity of compounds 19-21.

Antiproliferative activity screening (cytotoxicity against three cancer cell line):

HepG-2: Human Hepatocellular Liver Carcinoma Cells, HCT: Human Colon Carcinoma Cells and MCF-7: Human Breast Adrenocarcinoma Cells.
Tables no 10-15 and Figures no 6-17 show cytotoxicity of the examined compounds $\mathbf{1 4}, \mathbf{1 5}, \mathbf{1 8}$ and $\mathbf{2 1}$ standards at different concentrations ($50-1.56 \mu \mathrm{~g} / \mathrm{mL}$) against breast cancer (MCF-7), colon cancer (HCT) and hepatocellular (HepG-2) cell lines.

Table no 10. Effect standard compounds on cell viability using cytotoxic assay.

Conc. ($\mu \mathrm{g} / \mathbf{m L}$)	Doxorubicin for HEPG-2	Doxorubicin for HCT	Vinblastine for MCF-7
	Viability $\%$	Viability $\%$	Viability \%
50.00	10.95	6.82	7.82
25.00	14.29	8.89	15.18
12.50	16.90	14.83	29.6
6.250	21.03	16.16	48.75
3.125	30.32	22.28	60.35
1.560	48.25	34.64	76.24
0.780	57.44	45.78	$\ldots .$.
0.390	\ldots.	51.08	\ldots.
0.000	100	100	100

Table no 11. Effect of different concentrations of compound 14 on cell viability using cytotoxic assay.

Conc. $(\boldsymbol{\mu g} / \mathbf{m L})$	Viability \% for HCT	Viability \% for HEPG-2	Viability \% for MCF-7
50.00	6.87	8.97	7.45
25.00	14.92	24.16	19.73
12.50	31.24	41.62	36.38
6.250	42.85	58.80	51.74
3.125	68.62	77.31	69.28
1.560	85.14	84.28	84.26
0.000	100.00	100.00	100.00

Table no 12. Effect of different concentrations of compound 15 on cell viability using cytotoxic assay.

Conc. $(\boldsymbol{\mu g} / \mathbf{m L})$	Viability \% for HEPG-2	Viability \% for HCT	Viability \% for MCF-7
50.00	9.74	9.78	8.28
25.00	29.42	20.64	27.43
12.50	48.68	28.42	43.72
6.250	64.31	36.58	59.20
3.125	79.12	58.93	70.91
1.560	89.53	76.35	83.49
0.000	100.00	100.00	100.00

Table no 13. Effect of different concentrations of compound 18 on cell viability using cytotoxic assay.

Conc. ($\mu \mathbf{g} / \mathbf{m L}$)	Viability \% for HEPG-2	Viability \% for HCT	Viability \% for MCF-7
50.00	12.45	8.63	10.92
25.00	23.58	19.58	21.78
12.50	36.29	28.36	34.53
6.250	67.34	41.74	53.49
3.125	84.23	69.82	64.72
1.560	95.42	88.49	81.86
0.000	100.00	100.00	100.00

Table no 14. Effect of different concentrations of compound 21 on cell viability using cytotoxic assay.

Conc. $(\boldsymbol{\mu g} / \mathbf{m L})$	Viability \% for HEPG-2	Viability \% for HCT	Viability \% for MCF-7
50.00	10.97	4.95	6.04
25.00	28.13	11.43	14.85
12.50	42.56	22.38	30.94
6.250	59.28	33.62	41.16
3.125	74.16	46.41	58.22
1.560	83.72	59.05	69.75
0.000	100.00	100.00	100.00

Table no 15. IC_{50} values of tested compounds $\mathbf{1 4}, \mathbf{1 5}, 18$ and $\mathbf{2 1}$ compared with that of standard materials.

Compound no.	HCT $\left(\mathrm{IC}_{50}, \mu \mathrm{~g} / \mathrm{mL}\right)$	HEPG-2 $\left(\mathrm{IC}_{50}, \mu \mathrm{~g} / \mathrm{mL}\right)$	MCF-7 $\left(\mathrm{IC} \mathrm{C}_{50}, \mu \mathrm{~g} / \mathrm{mL}\right)$
	Standard 0.469	Standard 1.2	Standard 6.1
$\mathbf{1 4}$	5.4	9.5	7.0
$\mathbf{1 5}$	4.4	12.0	10.0
$\mathbf{1 8}$	5.3	9.7	7.4
$\mathbf{2 1}$	2.7	9.7	4.6

Figure 6. Viability activity against HepG-2 of compound 14.

Figure 7. Viability activity against HCT-116 of compound 14.

Figure 8. Viability activity against MCF-7 of compound 14.

Figure 10. Viability activity against HCT-116 of compound 15.

Figure 12. Viability activity against HepG-2 of compound 18.

Figure 14. Viability activity against MCF-7 of compound 18.

Figure 9. Viability activity against HepG-2 of compound 15 .

Figure 11. Viability activity against MCF-7 of compound 15 .

Figure 13. Viability activity against HCT-116 of compound 18.

Figure 15. Viability activity against HepG-2 of compound 21.

Figure 16. Viability activity against HCT-116 of compound 21.

Figure 17. Viability activity against MCF-7 of compound 21.

IV. Discussion

Scheme no 1 showed that 2-Thioxoquinazolin-5 6 H) ones $\mathbf{1 - 6}$ were synthesized in $93-98 \%$ yield via one-pot Biginelli reaction of 5,5-dimethylcyclohexane-1,3-dione (dimedone), thiourea and a number of aldehydes in absolute ethanol in presence of hydrochloric acid 37% as a catalyst. Tables no 1 and 2 showed infrared spectra of these quinazolinones, as intense peaks at $\gamma(3245-3190),(1676-1668)$ and (1628-1615) cm^{-1} for $(2 N H),(C=O)$ and $(C=C \& C=N)$, respectively. The ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}$) spectrum of compound 5 as an example, displayed two singlets at $\delta 10.92$ and 7.93 ppm for one NH proton, and CH-triazole, respectively. The aromatic protons showed as a doublet at $\delta 7.85(J=7.65 \mathrm{~Hz}) \mathrm{ppm}$ for $\mathrm{Ar}-H_{(\mathfrak{a})}$ and two triplets at $\delta 7.50(J=7.65$ $\mathrm{Hz})$ and $7.36(J=7.65 \mathrm{~Hz}) \mathrm{ppm}$ corresponding to $\mathrm{Ar}-H_{(\mathrm{b})}$ and $\mathrm{Ar}-H_{(\mathrm{c})}$, respectively. Two singlets appeared at δ 5.68 and 3.33 ppm for $\mathrm{CH}-$ methine and the second NH proton [21], respectively. Four doublets appeared at δ $2.61,2.39,2.36$ and 2.15 ppm with coupling constants $J=17.6,17.6,16.1$ and 16.06 Hz due to the two methylene groups $\left(\mathrm{CH}_{2(1)}\right.$ and $\left.\mathrm{CH}_{2(2)}\right)$, respectively. Two singlets at $\delta 1.03$ and 1.00 ppm were assigned to the two methyl groups. As well as the mass spectra of compounds $\mathbf{2}, \mathbf{3}, \mathbf{5}$ and $\mathbf{6}$ showed their molecular ion peaks at $\mathrm{m} / \mathrm{z} 331(5.3), 331(35.3), 353(23.6)$ and 454(2.7), respectively.

Scheme no 2 showed that treatment of 2-thioxoquinazolin- $5(6 H)$-one 5 with ethyl bromoacetate, afforded ethyl 2-(quinazolin-2-ylthio)acetate 7 as confirmed from previously reported results on other systems [22]. Tables 1 and 2 showed infrared spectrum of this compound as $\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and $(\mathrm{C}=\mathrm{O})$ at $\gamma 1737$ and 1717 cm^{-1}, respectively. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum revealed a multiplet at $\delta(4.20-4.17) \mathrm{ppm}$ for methylene (ester) and another multiplet at δ (1.27-1.21) ppm due to five protons of (S-CH2 \underline{H}_{2}) and (CH_{3}-ester).

Scheme 3 showed that 2-thioxoquinazolin- $5(6 \mathrm{H})$-ones 2,4 and 5 on reflux with hydrazine hydrate (99%) yielded the corresponding hydrazine derivatives $\mathbf{8 - 1 0}$ in $65-98 \%$ yield. Tables 1 and 2 showed infrared spectra of these compounds as $\left(\mathrm{NH}, \mathrm{NH}_{2}\right),(\mathrm{C}=\mathrm{O})$ and $(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C})$ at $\gamma(333-320)$, (168-165) and (165-160) cm^{-1}, respectively, as well as, ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) of compounds $\mathbf{8 - 1 0}$, showed two singlets at δ (9.79-8.67) and (4.34-3.31) ppm corresponding to two NH protons, the aromatic protons at δ (7.88-6.36) ppm and NH_{2} protons at $\delta(5.67-4.703) \mathrm{ppm}$. A singlet resonated at $\delta(5.50-5.13)$ due to methine proton. The methylene protons showed at $\delta(2.41-1.87) \mathrm{ppm}$, followed by two singlets at $\delta(1.00-0.82) \mathrm{ppm}$ for the two methyl protons. The molecular ion recorded in the mass spectra for compounds 9 and 10 at m/z 365/363 (9.57/40.41) and 351 (8.4), respectively are also in agreement with their molecular weights.

Scheme 1. Synthesis of 2-thioxoquinazolin-5(6H)ones 1-6.

Scheme 2. Synthesis of ethyl 2-(quinazolin-2-ylthio)acetate 7.

5

7

Scheme 4 showed that treatment of hydrazines $\mathbf{8}$ and $\mathbf{1 0}$ with a number of simple aromatic aldehydes as well as 5-formyl-2-methyl-3-(N -(2-oxoindolin-3-ylidene))carbohydra-zide [23] and 1-phenyl-1H-pyrazolo[4,3-b]-quino-xaline-3-carbaldehyde [24], resulted in the corresponding hydrazones 11-20 in yields of (69-99\%). Tables no 1-3 showed infrared spectra of these compounds, as NHs, $(\mathrm{C}=\mathrm{O})$ and $(\mathrm{C}=\mathrm{N} \& \mathrm{C}=\mathrm{C})$ at $\gamma(3319-3174)$, (1708-1640) and (1655-1585) cm^{-1}, respectively. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) spectrum of $\mathbf{1 6}$ as an example showed three singlets at $\delta 10.41,3.33$ and 8.62 ppm for two NH protons and azomethine proton $(\mathrm{CH}=\mathrm{N})$, respectively. The aromatic protons $(9 \mathrm{H})$ appeared as three doublets at $\delta 8.22(J=8.40 \mathrm{~Hz}), 7.97(J=8.40 \mathrm{~Hz})$ and 7.80 ppm $(J=7.65 \mathrm{~Hz})$ for $\mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}, \mathrm{Ar}^{(\mathrm{H}} \mathrm{H}_{(\mathrm{b})}$ and $\mathrm{Ar}-\mathrm{H}_{(\mathrm{c})}$, respectively, two triplets at $\delta 7.46(J=7.65 \mathrm{~Hz})$ and $7.33 \mathrm{ppm}(J$ $=7.65 \mathrm{~Hz}$) for $\mathrm{Ar}-\mathrm{H}_{(\mathrm{d})}$ and $\mathrm{Ar}-\mathrm{H}_{(\mathrm{e})}$, respectively, and a singlet at $\delta 8.06 \mathrm{ppm}$ due to CH-triazole. A singlet appeared at $\delta 6.49 \mathrm{ppm}$ due to CH-methine. A multiplet and three doublets at $\delta(2.51-2.45), 2.33(J=16.80 \mathrm{~Hz})$, $2.27(J=16.06 \mathrm{~Hz})$ and $2.09 \mathrm{ppm}(J=16.06 \mathrm{~Hz})$ for methylene protons $(4 \mathrm{H}) ; \mathrm{CH}_{2(1)}$ and $\mathrm{CH}_{2(2)}$, respectively. The two methyl groups appeared as two singlets at $\delta 1.01$ and 0.90 ppm . The molecular ion recorded in the mass spectrum is also in agreement with the molecular weight of 16. Furthermore, ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) revealed the signal corresponding to the $\mathrm{CH}=\mathrm{N}$ at $\delta 152.28 \mathrm{ppm}$.

Scheme 3. Synthesis of hydrazine derivatives 8-10.

2, 4, 5

4, 9: $\mathrm{Ar}=$

$\mathrm{NH}_{2} \mathrm{NH}_{2} \mathrm{H}_{2} \mathrm{O}$

8-10

5,10.

Scheme no 5 showed cyclization of hydrazine $\mathbf{1 0}$ with acetic acid to furnish the [1,2,4]triazolo[3,4b]quinzolin-6-one 21. Tables no 1 and 2 showed infrared bands as (NH), $(\mathrm{C}=\mathrm{O})$ and $(\mathrm{C}=\mathrm{N})$ at $\gamma 3244,1701$ and $1625 \mathrm{~cm}^{-1}$, respectively. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) spectrum displayed two singlets at $\delta 9.98$ and 7.95 ppm for NH and CH-triazole, respectively. The aromatic protons appeared as a doublet at $\delta 7.90 \mathrm{ppm}(J=7.65 \mathrm{~Hz})$ due to $\mathrm{Ar}-\mathrm{H}_{(\mathrm{a})}$ and two triplets at $\delta 7.52(J=7.65 \mathrm{~Hz})$ and $7.37 \mathrm{ppm}(J=7.65 \mathrm{~Hz})$ for $\mathrm{Ar}-\mathrm{H}_{(\mathrm{b})}$ and $\mathrm{Ar}-\mathrm{H}_{(\mathrm{c})}$, respectively. Methine proton resonated as a singlet at $\delta 5.49$, followed by a multiplet and three doublets at δ (2.506-2.458), $2.26(J=16.06 \mathrm{~Hz}), 2.24(J=16.06 \mathrm{~Hz})$ and $1.99 \mathrm{ppm}(J=16.06 \mathrm{~Hz})$ for the methylene protons $(4 \mathrm{H}) ; \mathrm{CH}_{2(1)}$ and $\mathrm{CH}_{2(2)}$, respectively. Three singlets at $\delta 1.81,1.02$ and 0.96 ppm displayed for the methyl protons (at triazole ring) and the two methyl groups (at quinazoline ring), respectively. In addition, the molecular ion peak recorded in the mass spectrum in accordance with its molecular weight.

Scheme 4. Synthesis of hydrazone derivaties 11-20.

8, 10

Scheme 5. Synthesis of 8,9-dihydro-3,8,8-trimethyl-5-(2-phenyl-2H-1,2,3-triazol-4-yl)-[1,2,4]-triazolo[3,4b]quinzolin- $6(5 H, 7 H, 10 H)$ one 21.

Proposed Mechanism of [1,2,4]-triazolo[3,4-b]quinzolinone 21 synthesis.

Bioactivity screening of synthesized quinazolinone derivatives:
 Antioxdant activity screening (using DPPH):

The DPPH (diphenyl picryl hydrazyl) assay method was based on the reduction of DPPH. The free radical DPPH with an odd electron gives a maximum absorption at 517 nm . When antioxidants react with DPPH, giving DPPD-H and as consequence the absorbance decreased due to decoulorization with respect to the number of electrons captured. EC_{50} values for each examined compound as well as standard preparations were calculated according to the Shahwar et al method [28] that showed that EC_{50} of compounds $\mathbf{1 0}, \mathbf{1 4}, \mathbf{1 5}$ and $\mathbf{2 1}$ had the highest values; $0.140,0.035,0.017$ and 0.150 mg , respectively compared to EC_{50} of vitamin E standard; 0.705 mg . As well as higher activities revealed in case of compounds $\mathbf{2 , 8} \mathbf{8}$ and $\mathbf{1 8}$ with $\mathrm{EC}_{50} ; 0.220,0.275$ and 0.380 mg , respectively. Moderate activities showed for compounds $\mathbf{3 , 4} 4$ and 20 with $\mathrm{EC}_{50} ; 0.525,0.550$ and 0.612 mg , respectively, meanwhile lower activities observed in case of compounds $\mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{9}, \mathbf{1 1}, \mathbf{1 6}, 17$ and 19 with EC_{50} equal to $>1,>1,0.952,1.025,0.925,>1,0.933,0.943 \mathrm{mg}$, respectively compared to the standard.

Antiproliferative activity screening (cytotoxicity against three cancer cell line):

The obtained data revealed that the maximum cell growth inhibitory effects on MCF-7 was obtained from compound 21 with IC_{50} equal to $4.6 \mu \mathrm{~g}$ compared to Vinblastine standard with $\mathrm{IC}_{50} 6.1 \mu \mathrm{~g}$; whereas, compounds 14,15 and 18 with IC_{50} equal to $7,10,7.4 \mu \mathrm{~g}$, respectively showed moderate activity. In addition, the examined compounds showed moderate cytotoxicity against HCT cell line and lower activity against HepG2 cell line.

V. Conclusion

In conclusion, some quinazolinone derivatives have been prepared. Their physical and chemical properties were studied, indeed these compounds showed potential antioxidant activities. Four of these compounds showed excellent antiproliferative activities.

References

[1]. Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some[4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. \& Med. Chem. Lett. 2004; 14: 1733-1736.
[2]. Akhaja, T.N.; Raval, J.P. 1,3-dihydro-2H-indol-2-ones derivatives: design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem. 2011; 46: 5573-5579.
[3]. Chitra, S.; Devanathan, D.; Pandiarajan, K. Synthesis and in vitro microbiological evaluation of novel 4-aryl-5-isopropoxycarbonyl-6-methyl-3,4-dihydropyrimidinones. Eur. J. Med. Chem. 2010; 45: 367-371.
[4]. Al-Bayati R. I., Al-Amiery A. A. H., Al-Majedy Y. K., novel quinazilinone derivatives: synthesis and antimicrobial activity, $14^{\text {th }}$ international electronic conference on synthetic organic chemistry 1-30 November 2010
[5]. Jafari E, Khajouei M. R., Hassanzadeh F., Hakimelahi, G. H., Khodarahmi, G. A. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Research in Pharmaceutical Sciences, 2016; 11(1): 1-14
[6]. Kumar, B.R.P.; Sankar, G.; Baig, R.B.N.; Chandrashekaran, S. Novel biginelli dihydropyrimidines with potential anticancer activity: a parallelsynthesis and CoMSIA study. Eur. J. Med. Chem. 2009; 44: 4192-4198.
[7]. Russowsky, D.; Canto, R.F.S.; Sanches, S.A.A.; D’Oca, M.G.M.; Fatima, A.d.; Pilli, R.A.; Kohn, L.K.; Antonio, M.A.; Carvalho, J.E.d. Synthesis and differential antiproliferative activity of biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem. 2006; 34: 173-182.
[8]. Singh, O.M.; Singh, S.J.; Devi, M.B.; Devi, L.N.; Singh, N.I.; Lee, S.-G. Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg. \& Med. Chem. Lett. 2008; 18: 6462-6467.
[9]. Zorkun, I.S.; Sarac, S.; Celebib, S.; Erol, K. Synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blockers. Bioorg. \& Med. Chem. 2006; 14: 8582-8589.
[10]. Yarim, M.; Sarac, S.; Ertan, M.; Batu, Ö. (S.); Erol, K. Synthesis, structural elucidation and pharmacological properties of some 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H)-pyrimidinones. II Farmaco. 1999; 54: 359-363.
[11]. Ertan, M.; Balkan, A.; Sarac, S.; Uma, S.; Renaud, J.F.; Rolland, Y. Synthesis and calcium antagonistic activity of some new 2-thioxo-1,2,3,4-tetrahydropyrimidine derivatives. Arch. Pharm. (Weinheim). 1991; 324: 135-139.
[12]. Ertan, M.; Balkan, A.; Sarac, S.; Uma, S.; Rübseman, K.; Renaud, J.F. Synthesis and biological evaluations of some 2-thioxo-1,2,3,4-tetrahydropyrimidine derivatives. Arzneim. Forsch. Drug Res. 1991; 41: 725-727.
[13]. Jetti, S.R.; Verma, D.; Jain, S. One-pot three-component biginelli-type reaction to synthesize 5-carboxanilide-dihydropyrimidinones catalyzed by ionic liquids in aqueous media. Internat. J. ChemTech Res. 2012; 4(4): 1720-1727.
[14]. Patil, A.D.; Kumar, N.V.; Kokke, W.C.; Bean, M.F.; Freye, A.J.; Brossi, C.D.; Mai, S.; Truneh, A.; Faulkner, D.J.; Carte, B.; Breen, A.L.; Hertzberg, R.P.; Johnson, R.K.; Westly, J.W.; Potts, B.C.M. Novel alkaloids from the sponge Batzella sp.: Inhibitors of HIV gpl20-human CD4 binding, J. Org. Chem. 1995; 60: 1182-1188.
[15]. Snider, B.B.; Chen, J.; Patil, A.D.; Freyer, A. Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzelladines A and D, Tetrahedr. Lett., 1996; 37: 6977-6980.
[16]. Badadhe, P.V.; Chate, A.V.; Hingane, D.G.; Mahajan, P.S.; Chavhan, N.M.; Gill, C.H. Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives catalyzed by thiamine hydrochloride under solvent-free condition. J. Korean Chem. Soc. 2011; 55(6): 936-939.
[17]. Niralwad, K.S.; Shingate, B.B.; Shingare, M.S. Ultrasound-assisted one-pot synthesis of octahydroquinazolinone derivatives catalyzed by acidic ionic liquid [tbmim] $\mathrm{Cl}_{2} / \mathrm{AlCl}_{3}$. J. Chin. Chem. Soc.; 2010: 57, 89-92.
[18]. Heravi, M.M.; Karimi, N.; Hamidi, H.; Oskooie, H.A. $\mathrm{Cu} / \mathrm{SiO}_{2}$: A recyclable catalyst for the synthesis of octahydroquinazolinone. Chin. Chem. Lett. 2013; 24: 143-144.
[19]. Kidwai, M.; Saxena, S.; Khan, M.K.R.; Thukral, S.S. Synthesis of 4-aryl-7,7-dimethyl-1,2,3,4,5,6,7,8-octahydroquina-zoline-2-one/thione-5-one derivatives and evaluation as antibacterials, Eur. J. Med. Chem. 2005; 40: 816-819.
[20]. Yarim, M.; Sarac, S.; Kilic, S.F.; Erol, K. Synthesis and in vitro calcium antagonist activity of 4-aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquina-zoline-2,5-dione derivatives II. Farmaco. 2003; 58: 17-24.
[21]. El-Gazzar, A.-R. B.A.; Hafez, H.N.; Abbas, H.-A.S. S- and C-nucleosidoquinazoline as new nucleoside analogs with potential analgesic and anti-inflammatory activity. Europ. J. Med. Chem. 2009; 44: 4249-4258.
[22]. Kotb, E.R.; El-Hashash, M.A.; Salama, M.A.; Kalf, H.S.; Abdelwahed, N.A.M. Acta Chim. Solv. 2009; 56: 908.
[23]. El Sadek, M.M.; Abd El-Dayem, N.S.; Hassan, S.Y.; Mostafa, M.A.; Yacout, G.A. Antioxidant and antitumor activities of new synthesized aromatic C-nucleosides. Molecules 2014; 19(4): 5163-5190.
[24]. E. Sallam, M.A.; Mostafa, M.A.; Hussein, N.A.R.; Townsend, L.B. Synthesis and spectral studies of 3-(2-aryl-1,3,4-oxadiazol-5-yl)-1-phenylpyrazolo[3,4-b]quinoxaline derivatives. Alex. J. Pharm. Sci. 1990; 4(1).
[25]. Kuraitheerthakumaran, A.; Pazhamalai, S.; Manikandan, H.; Gopalakrishnan, M. Rapid and efficient one-pot synthesis of octahydroquinazolinone derivatives using lanthanum oxide under solvent-free condition. J. Saudi Chem. Soc. 2014; 18: 920-924.
[26]. Niralwad, K.S.; Shingate, B.B.; Shingare, M.S.; Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives using ammonium metavanadate under solvent-free condition. Tetrahedr. Lett. 2010; 51: 3616-3618.
[27]. Mobinikhaledi, A.; Foroughifar, N.; Khodaei, H. Synthesis of octahydroquinazolinone derivatives using silica sulfuric acid as an efficient catalyst. Eur. J. Chem. 2010; 1(4): 291-293.
[28]. Shahwar, D; Raza, M.A.; Mirza, A.S.M.; Abbasi, M.; Ammad, V. Comparative study of antioxidant and antimicrobial activities of stembark extracts of Litchi chinensis and its organic fractions. J. Chem. Soc. Pak. 2010; 32(3): 357-362.
[29]. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. ImmunoI. Methods. 1983; 65: 55-63.
[30]. Vijayan, P.; Raghu, C.; Ashok, G.; Dhanaraj, S.A.; Suresh, B. Antiviral activity of medicinal plants of Nilgiris. Indian J. Med. Res. 2004; 120: 24-29.

Nagwa S. Abd El-Dayem. "Synthesis: Antioxidant and Antiproliferative Activities of Novel Quinazolinone Derivatives." IOSR Journal of Applied Chemistry (IOSR-JAC), 13(2), (2020): pp 49-64.

