Effect of Pyridine on the Corrosion Behavior of Electrodeposited Ni-Co Alloy Thin Films and Their Structural and Morphological Analysis

Shraddha Bais, R.K. Pathak
Govt. M.L.B. Girls PG college, Indore(M.P.), India, 452001
Corresponding Author: Shraddha Bais

Abstract: Ni-Co thin films have been grown on Stainless steel substrate by galvanostatic electrodeposition from Sulphate baths containing Pyridine as Organic inhibitor. A comparative study of corrosion parameters were done in three different electrolytes; NaCl, HCl, H$_2$SO$_4$ by tafel extrapolation method. Pyridine is found as an effective corrosion inhibitor for Ni-Co alloy thin films and showed minimum corrosion rate in NaCl medium. The morphology and structural analysis of thin films were done by Scanning Electron Microscopy (SEM) and X-Ray Diffraction pattern (XRD), respectively. Elemental composition has been determined by Energy Dispersive X-Ray spectroscopy (EDAX). XRD confirmed that the films possessed a mixture of Cubic and hcp crystal structures.

Keywords: thin films, galvanostatic electrodeposition, inhibitor, XRD, SEM-EDAX.

I. Introduction

Ni-Co alloys [1-3] are gaining tremendous attention of researchers due to its important applications in aviation industry, automobile industry, marine industry etc. Ni-Co co-deposition is anomalous. Many researchers studied the corrosion behavior of Ni-Co alloys and found it suitable as anticorrosive alloy [5]. Alloys with much lower corrosion rate are anticipated for better results to apply practically. Now a days the concept of corrosion inhibitors [6-8] is achieving interest of scientific community to lower the corrosion rate of metals and alloy thin films.

A corrosion inhibitor is a substance when added in a small concentration to an environment reduces the corrosion rate of a metal or alloy exposed to that environment. It can be use either internally addition into the plating bath as additive or by addition in exposing environment. Organic compounds containing Nitrogen, Oxygen and Sulphur reduces the corrosion rate. Inhibitors act by selectively precipitating on cathodic or anodic or mixed areas to limit the diffusion of reducing species to the surface.

In present work, Ni-Co alloy thin films are galvanostatically electrodeposited from a deposition bath containing pyridine (C$_5$H$_5$N) as organic inhibitor [9]. Their effects on corrosion properties of alloy thin films have been studied.

Structure of Pyridine (C$_5$H$_5$N)

II. Experimental Procedure

The composition of deposition bath used for synthesis of Ni-Co thin films is 0.10 M NiSO$_4$, 0.10-0.30 M CoSO$_4$, 0.10 M Na$_3$C$_6$H$_5$O$_7$, 0.20M H$_3$BO$_3$, 0.20M Na$_2$SO$_4$ and 0.0005M C$_5$H$_5$N (pyridine). All chemicals were of A.R. grade and deposition solutions were prepared in deionised water.

All electrochemical experiments were carried out in a conventional three electrode cell without stirring and potentials were referred to the saturated calomel electrode (SCE). Mild Steel (MS) plates with surface area 1cm X 1cm were used as working as well as counter electrode. The substrate plates were cleaned with emery paper and washed successively with acetone and distilled water. For data acquisition transistor
based power supply and for current density and potential measurements digital multimeters were used during electrochemical co-deposition of alloy thin films. The pH of deposition bath was maintained 3 using dilute H$_2$SO$_4$ and thin film depositions were carried out at 25°C.

Three deposition solutions were prepared by taking fix concentration of other chemicals including pyridine with different concentration of CoSO$_4$.

The electrodeposition was done using galvanostatic method on constant current density 2 mA/cm2 for 20 minutes at 25°C. The corrosion parameters of deposited alloy thin films were determined by Tafel Polarization curve. The corrosion rate were calculated using equation (1)

$$\text{C.R.} = \frac{(0.13 \cdot I_{\text{corr}} \cdot \text{eq.wt.})}{(D \cdot A)} \quad \text{(1)}$$

Here,

- C.R. = Corrosion rate (MPY)
- I_{corr} = Corrosion current density (μA/cm2)
- Eq.wt. = Equivalent weight of deposited alloy
- D = Density of alloy (gm/cm3)
- A = Area of substrate (cm2)

The morphology and composition of thin films were investigated by FModel: JEOL JSM5600 Scanning electron microscope(SEM) and EDS model: INCA Oxford. Crystalline phase of the deposited films was characterized by Bruker D8 Advance X-Ray Differectometer (XRD) with a monochromatized CuKα irradiation ($\lambda = 0.154$ nm).

III. Result and Discussion

Ni-Co alloy thin films with pyridine were obtained from different deposition baths at constant current density of 2 mA/cm2. The Sodium Citrate (Na$_3$C$_6$H$_5$O$_7$) was used as complexing agent while Boric Acid (H$_3$BO) As buffer.

In order to obtain the suitable static current for deposition, first of all the deposition was performed at different current densities i.e. 0.5 mA/cm2, 1mA/cm2, 2mA/cm2, 3mA/cm2 and 4mA/cm2 respectively. A smooth surface and corrosion rate was observed at 2 mA/cm2 and than all deposition experiments were carried out on this current density for 20 minutes. The variation in potential with time was noted in Fig.1. It shows the Potential Vs Time curve at fixed current density i.e. 2mA/cm2. During the deposition, potential first increases and than it decreases very fast up to a steady state value. The steady state indicates that the coverage of working electrolyte surface is nearly complete.

The estimated film thickness of Ni-Co thin films is in μm range.

Fig. 1: Potential-Time graph of 0.10M Ni+0.20M Co alloy Thin film in presence of pyridine as inhibitor at 2 mA/cm2

III.I Corrosion analysis

The corrosion behavior of electrodeposited Ni-Co thin films with pyridine as inhibitor on mild steel substrate was studied using Tafel polarization curve. The corrosion studies were made by cathodic and anodic polarization data shown in Fig 2(a-i)
Effect of Pyridine on the Corrosion behavior of Electrodeposited Ni-Co Alloy Thin Films and their

Fig 2(a): Tafel plot for 0.10M Ni+0.10M Co (with pyridine) in NaCl Medium

Fig 2(b): Tafel plot for 0.10M Ni+0.20M Co (with pyridine) in NaCl Medium

Fig 2(c): Tafel plot for 0.10M Ni+0.30M Co (with pyridine) in NaCl Medium

Fig 2(d): Tafel plot for 0.10M Ni+0.10M Co (with pyridine) in H₂SO₄ Medium

Fig 2(e): Tafel plot for 0.10M Ni+0.20M Co (with pyridine) in H₂SO₄ Medium

Fig 2(f): Tafel plot for 0.10M Ni+0.30M Co (with pyridine) in H₂SO₄ Medium

Fig 2(g): Tafel plot for 0.10M Ni+0.10M Co (with pyridine) in HCl Medium

Fig 2(h): Tafel plot for 0.10M Ni+0.20M Co (with pyridine) in HCl Medium
Effect of Pyridine on the Corrosion behavior of Electrodeposited Ni-Co Alloy Thin Films and their

The alloy thin films were tested in three different corrosive mediums i.e. NaCl, HCl and H₂SO₄ at three different concentrations. Table 1(a-c) shows the corrosion parameters of deposited films in different corrosive mediums. It was found that as the cobalt concentration increased in deposited films the corrosion rate was decreased in all mediums. The corrosion rates of Ni-Co alloy thin films synthesized in presence of pyridine as inhibitor were much lower than the Ni-Co alloys synthesized without inhibitor [10,11].

Table 1(a): Corrosion Rate of electrodeposited NiCo alloy thin films synthesized in presence of pyridine in NaCl medium

<table>
<thead>
<tr>
<th>Conc. Of NiSO₄.6H₂O</th>
<th>Conc. Of CoSO₄.6H₂O</th>
<th>Conc. Of Pyridine (C₅H₅N)</th>
<th>0.1 M NaCl</th>
<th>0.01 M NaCl</th>
<th>0.001 M NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 M</td>
<td>0.10 M</td>
<td>0.0005 M</td>
<td>0.2113</td>
<td>0.1215</td>
<td>0.0841</td>
</tr>
<tr>
<td>0.10 M</td>
<td>0.20 M</td>
<td>0.0005 M</td>
<td>0.1496</td>
<td>0.0855</td>
<td>0.0695</td>
</tr>
<tr>
<td>0.10 M</td>
<td>0.30 M</td>
<td>0.0005 M</td>
<td>0.1259</td>
<td>0.07225</td>
<td>0.0531</td>
</tr>
</tbody>
</table>

Table 1(b): Corrosion Rate of electrodeposited NiCo alloy thin films synthesized in presence of pyridine in H₂SO₄ medium

<table>
<thead>
<tr>
<th>Conc. Of NiSO₄.6H₂O</th>
<th>Conc. Of CoSO₄.6H₂O</th>
<th>Conc. Of Pyridine (C₅H₅N)</th>
<th>0.1 M H₂SO₄</th>
<th>0.01 M H₂SO₄</th>
<th>0.001 M H₂SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 M</td>
<td>0.10 M</td>
<td>0.0005 M</td>
<td>0.8404</td>
<td>0.4325</td>
<td>0.2430</td>
</tr>
<tr>
<td>0.10 M</td>
<td>0.20 M</td>
<td>0.0005 M</td>
<td>0.6310</td>
<td>0.3209</td>
<td>0.1596</td>
</tr>
<tr>
<td>0.10 M</td>
<td>0.30 M</td>
<td>0.0005 M</td>
<td>0.5309</td>
<td>0.2565</td>
<td>0.1095</td>
</tr>
</tbody>
</table>

Table 1(c): Corrosion Rate of electrodeposited NiCo alloy thin films synthesized in presence of pyridine in HCl medium

<table>
<thead>
<tr>
<th>Conc. Of NiSO₄.6H₂O</th>
<th>Conc. Of CoSO₄.6H₂O</th>
<th>Conc. Of Pyridine (C₅H₅N)</th>
<th>0.1 M HCl</th>
<th>0.01 M HCl</th>
<th>0.001 M HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 M</td>
<td>0.10 M</td>
<td>0.0005 M</td>
<td>0.1995</td>
<td>1.1448</td>
<td>0.0944</td>
</tr>
<tr>
<td>0.10 M</td>
<td>0.20 M</td>
<td>0.0005 M</td>
<td>0.1679</td>
<td>0.9635</td>
<td>0.0794</td>
</tr>
<tr>
<td>0.10 M</td>
<td>0.30 M</td>
<td>0.0005 M</td>
<td>0.1413</td>
<td>0.8108</td>
<td>0.0596</td>
</tr>
</tbody>
</table>

III.II Morphology and compositional analysis

The SEM images of deposited thin films are shown in Fig.3(a-b). The image analysis has confirmed that the thin films are homogenous with smooth surface area and evenly covered the mild steel substrate surface. The images showed the sharp thorn like structured particles which are agglomerated. The EDAX analysis (fig 4(a-b) confirmed the oxide alloy of NiCo. The Elemental data for NiCo thin films obtained from EDAX is shown in table 2.
Effect of Pyridine on the Corrosion behavior of Electrodeposited Ni-Co Alloy Thin Films and their

Table 2: percentage composition of NiCo alloy thin films

<table>
<thead>
<tr>
<th>Elements (Weight %)</th>
<th>Bath Composition</th>
<th>% Ni</th>
<th>% Co</th>
<th>% O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10M NiSO4+ 0.20M CoSO4+ 0.0005M Pyridine</td>
<td>2.6</td>
<td>60.01</td>
<td>37.39</td>
</tr>
<tr>
<td></td>
<td>0.10M NiSO4+ 0.3M CoSO4+ 0.0005M Pyridine</td>
<td>7.44</td>
<td>68.76</td>
<td>24.09</td>
</tr>
</tbody>
</table>

III.III Structural analysis

XRD of NiCo alloy thin films synthesized in presence of pyridine as inhibitor is shown in fig.5(a-c). The XRD with sharp peaks indicated the crystalline nature of the films. The peaks obtained in XRD graphs are compared with the standard JCPDS data. It was found that the films are a mixture of fcc and hcp crystal structures with hcp(111) and (101) as predominant planes.
Effect of Pyridine on the Corrosion behavior of Electrodeposited Ni-Co Alloy Thin Films and their Structural and Morphological Analysis

It was observed that as the cobalt content increased in the films the hcp crystal structure became predominant indicated by the increased intensities of related peaks. The crystallite size is determined by Scherrer equation (equation(2)) which was found to be less than 30 nm.

Crystallite size

\[D = \frac{k \lambda}{\beta \cos \theta} \]

(2)

\(\lambda \) = Wavelength of incident beam (nm)
\(k \) = Scherrer’s constant
\(\beta \) = Peak broadening (FWHM)
\(\theta \) = Scattering angle in radian

The dislocation density of thin films was calculated by equation (3).

\[\delta = \frac{1}{D} \]

(3)

here, \(\delta \) = Dislocation density

The crystallite size and dislocation density of electrodeposited NiCo thin films is shown in table 3.

Table 3: XRD parameters for (111) hcp plane

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Conc. Of NiSO(_4).6H(_2)O</th>
<th>Conc. Of CoSO(_4).6H(_2)O</th>
<th>Conc. Of pyridine (C4H6N)</th>
<th>Angle 2θ</th>
<th>Interplanar spacing (d) ((\AA))</th>
<th>FWHM (β)</th>
<th>Crystallite size (nm)</th>
<th>Dislocation density (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10 M</td>
<td>0.10 M</td>
<td>0.0005 M</td>
<td>41.7617</td>
<td>2.1612</td>
<td>0.48768</td>
<td>17.1350</td>
<td>0.0574</td>
</tr>
<tr>
<td>2</td>
<td>0.10 M</td>
<td>0.20 M</td>
<td>0.0005 M</td>
<td>41.7998</td>
<td>2.1593</td>
<td>0.49978</td>
<td>17.0151</td>
<td>0.0588</td>
</tr>
<tr>
<td>3</td>
<td>0.10 M</td>
<td>0.30 M</td>
<td>0.0005 M</td>
<td>41.6285</td>
<td>2.1678</td>
<td>0.28980</td>
<td>29.3239</td>
<td>0.0341</td>
</tr>
</tbody>
</table>

IV. Conclusion

NiCo alloy thin films having oxides were lucratively synthesized from sulphate bath containing pyridine as organic inhibitor. The alloy thin film with higher cobalt content showed the best results against corrosion in all applied corrosive mediums. Deposited thin films were homogenous in nature with smooth surface area. The NiCo alloy thin films have sharp thorn like structures which slightly agglomerated on increasing concentration of cobalt. XRD analysis confirmed the crystalline nature of films having hexagonal closed packed crystal structure along with face centered cubic phase which confirmed the formation of NiCo alloy thin films. The pyridine worked effectively both in terms of corrosion protection as well as better morphology, as compared to the alloy thin films synthesized without inhibitor.

References

DOI: 10.9790/5736-1105022227 www.iosrjournals.org 27 | Page