The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} nanocomposites

Azad Kumar*, Gajanan Pandey
Department of Applied Chemistry, School for physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
Corresponding author: Azad Kumar (kumarrazad20@gmail.com)

Abstract: In this paper, we have done the photodegradation of Methyl green dye in presence of prepared Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} nanocomposites. The nanocomposites of Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} was prepared by the solution impregnation method. The characterization of Synthesized TiO\textsubscript{2} and Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} nanocomposites were done by X-Ray Diffractometer, SEM, TEM, UV-Vis, FT-IR, Band gap energy and BET. The photocatalytic degradation of Methyl Green has been done in presence of TiO\textsubscript{2} and Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} nanocomposites. The presence of anatase and rutile phase in the nanocomposites has been confirmed by XRD analysis. The photocatalysts particle was found in nanodimension in morphology. The surface area was observed 34.72 and 96.58 m2/g for the TiO\textsubscript{2} and Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} nanocomposites. The band gap energy was observed 3.2 and 3.0 eV for the TiO\textsubscript{2} and Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} nanocomposites. The photocatalytic degradation behaviour of photocatalysts was investigated by considering different parameters such as effect of concentration, effect of amount of photocatalyst, effect of pH, effect of temperature, adsorption and kinetics. The 90-98 % photodegradation of Methyl Green has been found at 7 pH, 25 ppm concentration of dye, 800 mg/L amount of photocatalyst and 50 min illumination of visible light in presence of Ni_{0.10}:La_{0.05}:TiO\textsubscript{2} while 10-18 % in presence of neat TiO\textsubscript{2}. The photodegradation of Methyl Green was following the first order kinetics.

Keyword: Photodegradation, photocatalyst, photocatalysis, Methyl Green, nanocomposite.

I. Introduction

Cationic triphenylmethane dyes have found extensive use as colorants in industry and as antimicrobial agents [1]. Recent reports indicate that they may further serve as targetable sensitizers in the photodestruction of specific cellular components or cells [2-3]. Methyl green (MG) is a basic triphenylmethane-type dicationic dye, usually used for staining solutions in medicine and biology and as a photochromophore to sensitize gelatinous films [4]. Cationic (basic) dyes have been used for paper, polycrylonitrile, modified polyesters, polyethylene terephthalate, and, to some extent, in medicine. Originally they were used for silk, wool, and tannin-mordant cotton [5]. These water-soluble dyes yield colored cations in solution and that is why they are called cationic dyes. It has been used to differentiate between deoxyribonucleic acid and ribonucleic acid [6]. The binding of Methyl Green to DNA is probably ionic, as opposed to intercalative, and it remains so stably bound to double stranded DNA that, with its conversion to the colourless carbinol form, it has been used to assess the binding of other molecules to DNA [7-8]. However, great concern has arisen about the thyroid peroxidase-catalyzed oxidation of the triphenylmethane class of dyes because the reactions might form various N-de-alkylated primary and secondary aromatic amines, with structures similar to aromatic amine carcinogens [9].

Dyes are the most resistant compounds and used in various industries. The industrial effluents are causing adverse environmental problems [10-11]. Most of the dyes used in the pigmentation of textiles, leather, paper, ceramics, and food-processing are derived from azo dyes. Dyes are lost with waste water during synthesis and processing [12-13]. This represents a great hazard to human and environmental health due to the toxicity of azo dyes [14]. The treatment of such pollutants can be achieved by heterogeneous photocatalysis due to its efficiency and low cost as well as to the fact that it allows complete degradation of pollutants to carbon dioxide and inorganic acids [15-16].

Titanium dioxide TiO\textsubscript{2} is a most important nano material which has attracted a great attention due to its unique properties [17]. Titanium dioxide TiO\textsubscript{2} have excellent merits in solar energy transferring and photocatalysis of poison compounds in environment. The chemical inertness and the non-toxicity of TiO\textsubscript{2} have also made it a superior photocatalyst [18-19]. Titania has a large band gap (3.20 ev for anatase TiO\textsubscript{2}) and therefore, only a small fraction of solar light can be absorbed [20-21]. Many attempts have been made to sensitize titanium dioxide to the whole visible region, such as impregnation with transition metals [22-23], transition metal ions [24], non-metal atoms [24] and organic materials [25]. Introduction of dopant allows

DOI: 10.9790/5736-1009013144 www.iosrjournals.org 31 |Page
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

Titania to absorb in the visible region but this does not necessarily mean that the doped catalyst has a better photocatalytic activity [26]. In this study, to prepared the nanocomposites of Ni$_{0.10}$La$_{0.05}$TiO$_2$ by the solution impregnation method. Synthesized TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$ were characterized by X-Ray Diffractometer, SEM, TEM, UV- Vis, FT-IR, Band gap energy and BET. The TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$ were used as photocatalyst for the degradation of Methyl Green. We have investigated the photocatalytic degradation behaviour of cationic dye molecule from aqueous system onto prepared Ni$_{0.10}$La$_{0.05}$TiO$_2$ nanocomposites by taking methyl green as model molecule (showing in Figure 1). The photocatalytic degradation behaviour was investigated by considering different parameters such as effect of concentration, effect of amount of photocatalyst, effect of pH, effect of temperature, adsorption and kinetics.

II. Methodology

2.1 Preparation of the photocatalysts

In this method, 10 ml of TiCl$_4$ solution (1000 mg/l), 2ml of 0.1M Nickel acetate, 1ml of 0.1M Lanthanum nitrate and NaOH solution (64.5 g/l) was added drop wise to water with stirring. After the resulting solution reaches pH to 7, the slurry was filtered, and the filter cake of TiO$_2$ was washed and redispersed in water to prepare 1 M of TiO$_2$ slurry. Resulting TiO$_2$ slurry and an aqueous solution of HNO$_3$ were refluxed at 95°C for 2 h, cooled to room temperature and neutralized with 28% of aqueous ammonia. Then, it was filtered, washed and calcined at 400 °C. The Ni$_{0.10}$La$_{0.05}$TiO$_2$ nanocomposites were prepared by solution impregnation method. In this method suitable quantity of prepared TiO$_2$ (2 g) was dispersed in alcoholic Nickel acetate 10% (w/v) and lanthanum nitrate 5% (w/v). The dispersion is agitated continuously for 4 hour at 80 °C temperature. After the treatment the residue was removed through filtration and was sintered for 4 hour in presence of air at 600 °C by kipping it in a silica crucible inside the muffle furnace. After sintering and slow anilling to room temperature, content was taken out from furnace and was stored in air tight bottles and was used as photocatalyst [27-31].

$$\text{TiCl}_4 + 4\text{NaOH} \rightarrow \text{Ti(OH)}_4 + 4\text{NaCl} \quad (1)$$

$$\text{Ti(OH)}_4 \rightarrow \text{TiO}_2 + 2\text{H}_2\text{O} \quad (2)$$

$$\text{TiO}_2 + 10\% \text{Ni(CH}_3\text{COOH)}_3 + 5\% \text{La(NO}_3)_3 \rightarrow \text{Ni}_0.10\text{La}_0.05\text{TiO}_2 \quad (3)$$

2.2. Photocatalyst characterization

2.1.1. Powder x-ray diffraction analysis (P-XRD)

The physical properties of metal oxide semiconductor nanocomposites that may influence significantly their use as photocatalyst are dependent on nature of crystalline phase present. Thus, phase analysis is an important parameter for this study and the prepared samples were subjected to x-ray diffraction analysis on Powder X-Ray Diffractometer (Bruker AXS D8 Advance System, Germany). The observed X-Ray diffractogram of samples were analyzed further to estimate average grain size in the sample by Scherrer’s calculation [32].

$$T = \frac{0.9\lambda}{\beta \cos \theta} \quad (4)$$

Where, T is the mean size of the ordered (crystalline) domains, which may be smaller or equal to the grain size, K is a dimensionless shape factor, with a value close to unity. The shape factor has a typical value of about 0.9, but varies with the actual shape of the crystallite, λ is the X-ray wavelength, β is the line broadening at half the maximum intensity (FWHM), after subtracting the instrumental line broadening, in radians. This quantity is also sometimes denoted as $\Delta (2\theta)$, θ is the Bragg angle.
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

2.2.2. SEM analysis
The particle morphologies of the photocatalyst were studied using scanning electron microscope. Samples were mounted on aluminum stub with the help of double-sided tape. Mounted stabs were coated with gold palladium prior to analysis using a Polaron sputter coater.

2.2.3. TEM analysis
The particle morphologies of the photocatalyst were studied by using Transmission electron microscopy (TEM, JEOL JEM 2011 equipped with LaB6 filament). The TEM images were collected with a 4008 - 2672 pixel CCD camera (Gatan Orius SC1000) coupled with the DIGITAL MICROGRAPH software. Coupled chemical analyses were obtained by an EDX micro- analyzer (PGT IMIX PC).

2.2.4. BET surface area analyser
The surface area and pore characteristics of the derived photocatalyst was determined from nitrogen adsorption/desorption isotherms at 77 K (boiling point of nitrogen gas at 1atm pressure) using a BET surface area analyzer (BELSORP-max, Japan).

2.2.5. UV-Visible spectrophotometer
Since the absorption of light by photocatalyst is the most crucial step in any photocatalysed reaction, and is decided primarily by the band gap energy of material, attempt would also be made to evaluate band gap energy employing a UV spectrometer (UV 2450 Shimadzu).

2.2.6. Fourier transforms Infrared spectroscopy (FTIR)
The Photocatalyst (2 mg) was mixed with 200 mg of KBr and then pelleted. The FT-IR spectra of the pellets were recorded using a Fourier Transform Infra-Red Spectrometer (FTIR) Thermo Scientific (Nicole 6700).

2.3. Dark adsorption studies
The adsorption studies were performed using aqueous solutions of EBT. For this purpose 20 ml dye solution of different concentrations (25-100 ppm) were magnetically stirred separately in presence of bare and metal impregnated catalysts (0.5g) in dark up to 30 min. Thereafter, the suspensions were collected after regular time intervals (5 min) filtered through cellulose filter and then sample were analyzed by UV-vis spectrophotometer at $\lambda_{max} = 631.5$ nm for Methyl Green [33].

2.4. Photo-degradation of dyes
In this study by the photo-catalytic degradation of Methyl Green was investigated. A solution of dye in water: alcohol (10:1 V/V) was prepared and in this solution a suitable quantity of photocatalyst (100 to 800 mg/L) was dispersed. The dispersion was subjected to Visible light irradiation (500 W Tungsten Lamp were used for the visible light radiation in a close chamber) for varying duration and after desired irradiation the residual concentration of dye in the solution was determined spectrophotometrically by taking out suitable aliquot of dispersion and removal of photocatalyst by centrifugation. A quantitative estimation of dye concentration spectrometric observation when recorded only at the experimental determines λ_{max} value which is 631.5 nm [34-43]. The % degradation efficiency of Methyl Green dye was calculated by Equation (5).

$$\eta \% = \frac{A_0-A_f}{A_0} \times 100 \tag{5}$$

III. Results

3.1. Characterization of Photocatalyst
3.1.1. Phase identification by X-ray diffraction analysis
The obtained X-Ray diffraction patterns of TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$ are shown in Figures 2. The observed pattern of peaks, when compared with the standard JCPDS database, suggested that, in prepared TiO$_2$ sample, major peaks at 29 = 25.5, 37.2, 48.3, and 54.4, which can be indexed to the (101), (004), (200), and (211) crystal facets of anatase TiO$_2$ (JCPDS File number: 21-1272). Whereas major peaks at 29 = 26.9o and 28.2o indicate the presence of rutile phase which can indexed to the (110), (121), respectively [32]. In case of Ni$_{0.10}$La$_{0.05}$TiO$_2$ sample, the observed XRD pattern indicates not only a change in the peak intensity, compared to TiO$_2$ but even the absence of some originally observed TiO$_2$ peaks [44]. This is, probably, due to the change in the crystallinity and grain fragmentation, when the samples were wet impregnated by Nickel and Lanthanum. Utilizing the observed X-ray diffraction data of samples, Scherrer’s calculations were attempted to know the average size of particles/grains in the samples [32]. Although, Scherrer’s calculations are only approximate in nature, but definitely provide a first-hand idea of the average size of the crystal in the samples, which may be quite accurate, provided the size of crystal is below 100 nm.

The mean size of TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$ nanocomposites, calculated by Scherrer’s Equation, are about 76 and 34 nm respectively. The results of Scherrer’s calculations are presented in Table 1. The results suggest average size of the crystal in the samples lying in nm range. The result is in good agreement with the TEM.

DOI: 10.9790/5736-1009013144 www.iosrjournals.org 33 |Page
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

![XRD pattern](image)

Table 1: Average size of crystal in the samples of TiO$_2$ and Ni$_{0.10}$:La$_{0.05}$:TiO$_2$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Particle Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>76</td>
</tr>
<tr>
<td>Ni${0.10}$:La${0.05}$:TiO$_2$</td>
<td>34</td>
</tr>
</tbody>
</table>

3.1.2. UV-Vis spectra

Aqueous suspensions of the samples were used for the UV absorption studies. The absorption spectrum of TiO$_2$ consists of a single broad intense absorption between 383 nm due to the charge-transfer from the valence band to the conduction band [45]. The undoped TiO$_2$ showed absorbance in the shorter wavelength region while Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ result showed slight red shift in the absorption edge. The absorption peak of Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ was found at 410 nm. It is showing in Figure 3. The impregnation of Ni and La ions into TiO$_2$ could shift optical absorption edge from UV to visible range, but slight change in TiO$_2$ band gap was observed [46-47].

![Absorption spectra](image)

Figure 3. UV- spectra of TiO$_2$ and Ni$_{0.10}$:La$_{0.05}$:TiO$_2$

3.1.3. Band gap energy determination

The band gap of samples was calculated by extrapolation of the $(a h v)^2$ versus $h v$ plots, where a is the absorption coefficient and $h v$ is the photon energy, $h v = (1239/\lambda)$ eV. The value of $h v$ extrapolated to $a = 0$ gives an absorption energy, which corresponds to a band gap (E_g). From the Figure 4 we found an E_g value of 3.2 eV for TiO$_2$ and 3.0 for Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ [48]. The slight decrease in band gap energy in case of Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ is due to formation of sub-band level between valence band and conduction band caused impregnation of Ni$^{2+}$ and La$^{3+}$ ions in TiO$_2$ host [49].

DOI: 10.9790/5736-1009013144 www.iosrjournals.org
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

3.1.4. FT-IR spectroscopy

FT-IR spectra of undoped and 10% Ni and 5% La impregnated TiO₂ samples (Figure 5) show peaks corresponding to stretching vibrations of the O-H and bending vibrations of the adsorbed water molecules around 3350-3450 cm⁻¹ and 1620-1635 cm⁻¹, respectively. The broad intense band below 820, 804, 592 and 456 cm⁻¹ is due to Ti-O-Ti vibrations. The shift to the higher wave numbers and sharpening of the Ti-O-Ti band may be due to decrease in size of the catalyst nanoparticles. In addition, the surface hydroxyl groups in TiO₂ increased with the increasing of Ni loading, which is confirmed by increase in intensity of the corresponding peaks. The FT-IR spectra of Ni₀.₁₀:La₀.₀₅:TiO₂ show strong band at 1075 cm⁻¹, corresponds to the vibration of Ni-O bond and confirms the penetration of nickel in Titania [50].

3.1.5. Transmission Electron Microscope (TEM) and EDX.

TEM images were clearly displayed the morphology and particle size of neat TiO₂ and Nickel and lanthanum doped TiO₂. From the Fig. 6 we find that Nickel and lanthanum doped modified TiO₂ change the size of neat TiO₂ significantly, as shown in Fig. 6(a) and (b). The sizes of both modified and neat TiO₂ are mono disperse about 100–200 nm. Moreover, the crystal lattice line can be clearly found in the TEM images. The aggregations of both kinds of particles are caused by high surface energy; however, the agglomeration of the modified one is alleviated obviously compared with that of the neat [51].
EDX is an analytical technique used for the elemental analysis or chemical characterization of a sample. Compositional analysis of the nanomaterials can also be obtained by monitoring the X-rays produced by electron-specimen interaction. The formation and composition of crystalline Ni$_{0.10}$La$_{0.05}$TiO$_2$ nanocomposite was justified from EDX measurements. The compositional measurement of Ni$_{0.10}$La$_{0.05}$TiO$_2$ nanocomposite is showing in the Figure 7. The presence of La and Ni in the EDX is indicating that the metal ions of Ni and La have been impregnated in the Titania crystal. In the Figure the Cu is also observed this is due to the copper grid used in TEM analysis.

![Fig.7. EDX image of Ni$_{0.10}$La$_{0.05}$TiO$_2$ nanocomposite](image)

3.1.6. Scanning Electron Microscopy (SEM)

The morphology of the samples was investigated by scanning electron microscopy and it resumes the most interesting outcomes. Figure 8 (a) and 8 (b) clearly show that both the prepared samples are obtained in nanometric dimension. The impregnation of Nickel and lanthanum is indicating that the particle size reduce due the penetration of Nickel and lanthanum in the lattice of titanium dioxide [52].

![Fig.8. SEM image of the (A) TiO$_2$ (B) Ni$_{0.10}$La$_{0.05}$TiO$_2$](image)

3.1.7. Surface Area Analysis (BET)

The specific surface area, pore volume and average pore size of the TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$ photocatalyst were determine. Figure 9 showing the BET adsorption and desorption plots for the pure Titania and Ni, La impregnated Titania. Table 1 shown the physical properties of TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$. The surface area of TiO$_2$ and Ni$_{0.10}$La$_{0.05}$TiO$_2$ was found 34.72 and 96.58 m2/g. The surface area of Ni$_{0.10}$La$_{0.05}$TiO$_2$ is increased rapidly with impregnation of Ni and La in pure Titania. The TiO$_2$ modified by Ni and La are fragmented to some extent during thermal treatment, leading to a marked increase of the BET surface areas and the average pore radius size and decreasing of the pore volume [53].
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

Table 1:- The specific surface area, pore volume and pore radius of the TiO$_2$ and Ni$_{0.10}$:La$_{0.05}$:TiO$_2$

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m2/g)</th>
<th>Pore volume (cm3/g)</th>
<th>Pore radius (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>34.72</td>
<td>11.132</td>
<td>1.21</td>
</tr>
<tr>
<td>Ni${0.10}$:La${0.05}$:TiO$_2$</td>
<td>96.58</td>
<td>9.9124</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Fig.9. Adsorption and Desorption plots for Titania and Ni, La Impregnated Titania.

3.2. Adsorption study

A control experiment was first carried out under two conditions, vis (i) dye + UV (no TiO$_2$) (ii) TiO$_2$ + dye in dark without any irradiation (iii) Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ + dye in dark without any irradiation (Figure 10). It can be seen that under dark conditions, after 20 min the amount of Methyl Green dye adsorbed becomes constant i.e. equilibrium adsorption is achieved. The reaction of Methyl Green in presence of TiO$_2$ and Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ nanocomposites and UV irradiation is an example of heterogeneous catalysis. Rate laws in such reactions seldom follow proper law models and hence are inherently more difficult to formulate from the data. It has been widely accepted that heterogeneous catalytic reactions can be analyzed with the help of Langmuir Hinshelwood (LH) Model [54], with the following assumptions being satisfied:

(i). There are limited numbers of adsorption sites on the catalyst and its surface is homogeneous,
(ii). Only one molecule can be adsorbed on one site and monolayer formation occurs
(iii). The absorption reaction is reversible in nature, and
(iv). The adsorbed molecules do not react amongst themselves [55].

According to LH Model, following steps take place in the kinetics mechanism [56] (Adsorption of dye onto the catalyst surface). There are three steps of adsorption, Surface reaction, Desorption of products from the surface.

Step 1:- D (Dye) + C (catalyst) \rightarrow D.C
Step 2:- D.C \rightarrow E.C + Other products
Step 3:- E.C \rightarrow E + C

Fig.10. (a) change in concentration under dark with TiO$_2$, Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ and in visible light (b) under dark with Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ at different concentrations.

3.3. Photo-degradation of Dyes

The residual concentration of dye in the reaction mixture was measured spectrophotometrically. The results obtained for the degradation of Methyl Green is shown in Fig. 11-15.
3.3.1. Effect of concentration of dye

Effect of dye concentration keeping the catalyst loading concentration constant at 800 g/liter of the dye solution, the effect of varying concentration of the dye was studied on its rate of degradation (from 25 ppm to 100 ppm) as given in Fig. 11. In presence of Titania the photodegradation of Methyl green dye was found 18% and 3% at 25 and 100 ppm concentration of dye solution. But in presence of Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ the photodegradation was found 98.6% and 56% at 25 ppm and 100ppm concentration of dye. With increasing concentration of Methyl Green the rate of degradation was found to decrease. This is because as the number of dye molecules increase, the amount of light (quantum of photons) penetrating the dye solution to reach the catalyst surface is reduced owing to the hindrance in the path of light. Thereby the formation of the reactive hydroxyl and superoxide radicals is also simultaneously reduced. Thus there should be an optimum value maintained for the catalyst and the dye concentration, wherein maximum efficiency of degradation can be achieved [34-39, 57].

![Fig.11. Effect of concentration on photodegradation of Methyl Green with (a) TiO$_2$ (b) Ni$_{0.10}$:La$_{0.05}$:TiO$_2$.](image)

3.3.2. Effect of irradiation Time on photodegradation

The effect of irradiation time on the photodegradation of Methyl Green has been studied in presence of Ni$_{0.10}$:La$_{0.05}$:TiO$_2$. The photodegradation of Methyl Green was increased with increase irradiation time. The photodegradation was found maximum in 50 min irradiation of visible light. Figure 12 shows the effect of irradiation time on photocatalytic degradation of Methyl Green. This is because of the interaction of dye molecule with the surface of photocatalyst. The time of irradiation increase, the interaction of methyl green dye molecule increased with the surface of photocatalyst. Therefore the photodegradation efficiency of photocatalyst was increased [34, 36, 58].

![Fig.12. Effect of irradiation time on photocatalytic degradation of Methyl Green with Ni$_{0.10}$:La$_{0.05}$:TiO$_2$.](image)

3.3.3. Effect of pH of solution

The photodegradation reaction was also carried out under varying pH from 4 to 9, by adjusting with H$_2$SO$_4$ and NaOH, with photocatalyst kept at constant amounts of 800 mg/L in the dye solutions (Figure 13). The maximum photodegradation of Methyl Green dye was found 17% and 88% in presence of TiO$_2$ and...
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ at neutral medium or pH of solution. The reaction of photodegradation was found low rates at acidic and basic ranges of pH. While at pH 7 or neutral medium, the photodegradation was found maximum. This implies that neutral conditions are favourable towards the formation of the reactive intermediates that is hydroxyl radicals is significantly enhanced, which further help in enhancing the reaction rate. There is another region that the Methyl Green is the dicaticionic dye which has 2+ charges. The surface of photocatalyst has slightly negative which can interact to positive dye molecule easily in the solution. On the other hand in highly acidic medium conditions for the formation of reactive intermediates is relatively less favourable and hence less spontaneous [40-42, 58].

![Fig.13. Effect of pH on photodegradation of Methyl Green with (a) TiO$_2$ and (b) Ni$_{0.10}$:La$_{0.05}$:TiO$_2$.](image)

3.3.4. Effect of photocatalyst amount

The effect of photocatalyst amount has been studied by applying the different amount (100 ppm to 1600 ppm) of the photocatalyst. The photodegradation rate was found to increase by increasing the amount of photocatalyst but still a limited amount of photocatalyst, after certain amount of photocatalyst, the photodegradation is decreasing. The maximum photodegradation was found 99.2 and 21 % at 800mg/L amount of photocatalyst in presence of Ni$_{0.10}$:La$_{0.05}$:TiO$_2$ nanocomposite and TiO$_2$ respectively.

![Fig.14. Effect of amount of photocatalyst on photodegradation of Methyl Green with (a) TiO$_2$ (b) Ni$_{0.10}$:La$_{0.05}$:TiO$_2$.](image)

It is clear from the results shown in Figure14, the photodegradation increased rapidly with increase of amount from 100 mg/L to 800mg/L of Ni$_{0.10}$:La$_{0.05}$:TiO$_2$. We were found that when increase the amount of photocatalyst from 800mg/L to 1600mg/L, the photodegradation of dye rapidly decreased. This is due to the photocatalyst and dye molecule is properly interacting to each other till the 800mg/L amount of photocatalyst. After 800mg/L amount of photocatalyst, the turbidity increased in the solution due to photocatalyst molecules. The light (photon) is not striking on the surface of molecule. Therefore, the interaction between dye molecule and photocatalyst is decreased in some amount. The introduction of Ni$^{2+}$ and La$^{3+}$ ions in TiO$_2$, the surface area of photocatalyst was increased which increased the photocatalytic activity of Titania [43, 59].

DOI: 10.9790/5736-109013144 www.iosrjournals.org 39 | Page
3.3.5. Effect of photocatalyst

It is clear from the results shown in Fig. 11-14 that Ni_{0.10}:La_{0.05}:TiO_2 is effective photo-catalyst for the degradation of Methyl Green (MG) dye than pure TiO_2. However Ni_{0.10}:La_{0.05}:TiO_2 seems to be more effective as photocatalyst for the degradation of Methyl Green (MG). The prominent degradation of Methyl Green was found in 50 min study in the presence of Ni_{0.10}:La_{0.05}:TiO_2 in comparison to the prepared TiO_2 [42, 59].

3.4. Lowering of electron-hole recombination

Photoluminescence spectra have been used to examine the mobility of the charge carriers to the surface as well as the recombination process involved by the electron-hole pairs in semiconductor particles. PL emission results from the radiative recombination of excited electrons and holes. In other words, it is a critical necessity of a good photocatalyst to have minimum electron-hole recombination. To study the recombination of charge carriers, PL studies of synthesized materials have been undertaken. PL emission intensity is directly related to recombination of excited electrons and holes. Fig. 15 shows the photoluminescence spectra of synthesized photocatalysts. In the PL spectra the intensity of TiO_2 is higher than Ni_{0.10}:La_{0.05}:TiO_2 indicating rate of recombination of e^-·h^+ is higher in TiO_2 than that of Ni_{0.10}:La_{0.05}:TiO_2. The weak PL intensity of Ni_{0.10}:La_{0.05}:TiO_2 may arise due to the impregnation of Ni in Titania lattice, which for sub band level in band gap region of TiO_2. This delays the electrons- holes recombination process and hence utilized in the redox, reaction leading to improved photocatalytic activity [60].

![Fig. 15. Photoluminescence Spectra of (a) TiO_2 and (b) Ni_{0.10}:La_{0.05}:TiO_2](image)

3.5. Lowering of electron-hole recombination

As hydroxyl radical performs the key role for the decomposition of the organic pollutants, it is necessary to investigate the amount of hydroxyl radicals produced by each photocatalyst. In this study terephthalic acid (TA) has been used as a probe reagent to evaluate OH radical present in the photoreaction pathway. Fig. 16 shows the PL spectra of TiO_2 and Ni_{0.10}:La_{0.05}:TiO_2 recorded Methyl Green solution in presence of 10^{-3}M Terephthalic solution. OH radical attack Terephthalic Acid, forming 2-hydroxyl terephthalic acid (TAOH) which gives a fluorescence signal at 426 nm. The fluorescent intensity is linearly related to the number of hydroxyl radicals formed by the photocatalysts. Higher the generation of hydroxyl radical, more will be yield of TAOH and hence more intense will be the fluorescence peak. The spectra show that the intensity of...
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

3.5. Kinetic study

The data plotted in Fig. 17 were used for the calculation of the apparent kinetic constants for different reaction conditions. The rate of degradation of organic compounds in wastewaters can be described by a pseudo-first order Langmuir–Hinshelwood kinetic model [62-63]:

\[
\frac{dc}{dt} = \frac{cK_K_r}{1+KC} \tag{6}
\]

where \(r\) stands for the rate of degradation, \(K\) represents the equilibrium constant for the adsorption of MG on the catalyst surface, and \(K_r\) denotes the kinetic constant for the degradation reaction at maximum surface coverage. On integrating Eq. (6), we obtain the irradiation time, \(t\), for attaining a concentration \(C_t\) of the MG:

\[
t = \left(\frac{1}{K_r}\right) \ln \left(\frac{C_0}{C_t}\right) + \frac{C_0-C_t}{K_r} \tag{7}
\]

where \(C_0\) represents the initial concentration of MG. Therefore at low \(C_o\), the second term in Eq. (7) becomes insignificant and hence can be neglected:

\[
\ln \left(\frac{C_0}{C_t}\right) = k_rK_t = k_{app}t \tag{8}
\]

With \(k_{app}\) as the apparent rate constant for the photocatalytic degradation reaction. The almost perfect linearity of the \(\ln(C_o/C_t)\) versus \(t\) plots for various initial MG concentrations, Fig. 17, proves the applicability of the Langmuir–Hinshelwood equation for the photocatalytic degradation of MG [64]. The apparent rate constant, \(k_{app}\), decreases as the initial concentration of MG increases. At too high MG concentrations, a greater amount of dye molecules adsorb on the catalyst surface blocking the photocatalytically active sites on the catalyst, thus reducing the absorption of photons, their interaction with the active sites and therefore inhibiting the photocatalytic degradation process. In addition, increasing MG concentration leads to a larger fraction of the UV irradiation that is absorbed by the dye molecules in the water solution, instead of being absorbed by the catalytically active sites [64-66]. The effect of Temperature on rate constant has been studied. The rate constant was found 0.0050 and 0.0062 \(\text{min}^{-1}\) in presence of Titania at 30\(^\circ\)C and 40\(^\circ\)C temperature of reaction. The rate constant is slightly increased with increase of temperature. The rate constant was found 0.0072 and 0.0102 \(\text{min}^{-1}\) in presence of \(\text{Ni}_{0.10}:\text{La}_{0.05}:\text{TiO}_2\) nanocomposite at 30\(^\circ\)C and 40\(^\circ\)C temperature of reaction. The rate constant of the photocatalysis is increasing with increase of temperature. This is due to the rate of reaction increased with increasing the temperature. The kinetic energy of dye molecule is increase with increase of temperature, which causes the interaction of dye molecule with photocatalyst. Hence the rate of reaction and rate constant are increased with increasing the temperature of reaction.

![Fig.17: The straight line relationship between the \(\ln(C_o/C_t)\) and irradiation time indicates photodegradation rate of Methyl Green (50 ppm) can be approximated by a pseudo first order reaction (a) TiO\(_2\) at 30\(^\circ\)C (b) TiO\(_2\) at 40\(^\circ\)C (c) \(\text{Ni}_{0.10}:\text{La}_{0.05}:\text{TiO}_2\) at 30\(^\circ\)C (d) \(\text{Ni}_{0.10}:\text{La}_{0.05}:\text{TiO}_2\) at 40\(^\circ\)C.](image_url)

IV. Conclusion

Prepared nanocomposites of \(\text{Ni}_{0.10}:\text{La}_{0.05}:\text{TiO}_2\) were characterized by X-Ray Diffractometer, SEM, TEM, UV-Vis, FT-IR, Band gap energy and BET. The TiO\(_2\) and \(\text{Ni}_{0.10}:\text{La}_{0.05}:\text{TiO}_2\) were used as photocatalyst for the degradation of Methyl Green. The particle size was estimated by the Scherrer’s and found 76 and 34 nm for TiO\(_2\) and \(\text{Ni}_{0.10}:\text{La}_{0.05}:\text{TiO}_2\) respectively. The XRD pattern confirmed the presence of anatase and rutile phase in the catalyst. The particle morphology of the photocatalysts was found in nanodiimension. The surface area of
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

TiO₂ and Ni₀.10:La₀.05:TiO₂ were found 34.72 and 96.58 m²/g. The band gap energy of TiO₂ and Ni₀.10:La₀.05:TiO₂ were 3.2 and 3.0 eV. The photocatalytic degradation behaviour of photocatalysts was investigated by considering different parameters such as effect of concentration, effect of amount of photocatalyst, effect of pH, effect of temperature, adsorption and kinetics. The photodegradation of Methyl Green has been found 90-98 % at 7 pH, 25 ppm concentration of dye, 800 mg/L amount of photocatalyst and 50 min illumination of visible light in presence of Ni₀.10:La₀.05:TiO₂ while 10-18 % in presence of neat TiO₂ . The photodegradation was following the first order kinetics.

Acknowledgement

We thanks for financial assistance to UGC, Government of India is acknowledged. The authors also acknowledge the support provided by the Babasaheb Bhimrao Ambedkar University, Lucknow, India.

References

DOI: 10.9790/5736-1009013144 www.iosrjournals.org 42 |Page
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive

DOI: 10.9790/5736-1009013144 www.iosrjournals.org 43 |Page
The photocatalytic degradation of Methyl Green in presence of Visible light with photoactive Ni0.10:La0.05:TiO2 nanocomposites.

DOI: 10.9790/5736-1009013144 www.iosrjournals.org 44 |Page