Synthesis and Characterization of Samarium doped SrBi$_{2-x}$O$_4$ oxides

K. Chandru1, G. Selvanathan1, B.B. Das2

1Department of Chemistry, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai-609305, TN
2Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University, Puducherry-605014

Abstract: Sm$^{3+}$ doped SrBi$_{2-x}$O$_4$ oxides were prepared by sol - gel method via nitrate citrate route with ‘x’ values ranging from 0.0, 0.1, 0.2, 0.3, and 0.4 (samples C0 - C4). X-ray powder diffraction analysis reveals the single phase monoclinic structure with the space group of P2m. Rietveld refinement of unit cell structure shows lowered agreement factors R_p, R_w, and R_p for all the samples. Average crystallite size was determined by Scherrer’s relation in the range of ~36 - 45nm. Magnetic properties of the samples were analyzed by using Vibrating Sample Magnetometer at room temperature which reveals a weak ferromagnetic behaviour for C1 to C4 and diamagnetic behaviour for sample C0. EPR studies recorded at liquid helium temperature show a single absorption peak with defect line content. Optical absorption spectra of the prepared samples were recorded in UV visible region from 200nm to 800nm. FT-IR spectra of the samples were recorded at room temperature, which show the characteristic absorptions at 853 cm$^{-1}$ and 533 cm$^{-1}$ corresponding to the tetrahedral and octahedral sites. SEM studies show the particles were agglomerated with rod like structure. The combined TGA – DSC measurements show important stages of decomposition with no phase transition.

Keywords: Powder X-ray diffraction, Samarium ion, TGA, FT-IR, Sol – gel synthesis.

I. Introduction

Growing demand for new research material with practical application necessity is growing everyday in view of scientific and technological interests. If a material is magnetically active nano metal oxide, it receives much attention owing to their application in memory storage device, data writing, gas sensors and in magnetic drug delivery system [1-2]. Choosing suitable magnetically active ion with excellent electrical and optical properties, one can cater the needs of growing demands. Rare earth ion with unpaired 4f electron when doped in to larger size cation leads to significant structural distortion with strain and modifies the electrical and magnetic properties [3-6]. The method of preparation of this composite oxide material should involve low temperature, homogenous particles in nano range and good stoichiometric control. Several soft methods are available for the synthesis of magnetically active composite oxide material such as hydrothermal, micro emulsion, spray drying, sol – gel and reverse micelle method. Among these methods the sol – gel method [7] is one of the best method for preparing magnetically active composite oxide material which has the ability to provide all the desired properties.

II. Experimental

The sol-gel method was used for the synthesis of Sm$^{3+}$ doped SrBi$_{2-x}$O$_4$ oxides. Sm$^{3+}$ doped samples were synthesized by mixing SrCO$_3$, Sm$_2$O$_3$ and Bi(NO$_3$)$_3$ in a stoichiometric ratio to obtain SrSm$_x$Bi$_{2-x}$O$_4$ oxides with x values from 0, 0.1, 0.2, 0.3, 0.4. Starting materials SrCO$_3$, Sm$_2$O$_3$ and Bi(NO$_3$)$_3$ were first mixed with aqueous HNO$_3$ solution (pH ~ 2) for converting into corresponding nitrates. In addition to nitric acid, urea was also added to Sm$_2$O$_3$ solution to act as a trigger during combustion process. The above said solution was mixed with 30 ml of 1.5 M citric acid and kept in magnetic stirrer at 50 °C for four days. The resulted gel like substance was then decomposed at 120 °C and sintered at 400 °C for 2 hours and then at 800 °C for 4 hours in a muffle furnace. The resulting powder obtained was ground in an agate mortar and utilized for characterization.

2.1. Characterization

X-ray powder diffraction studies were carried out in an X’pert powder X-ray diffractometer (PAN Analytical make) with a scan rate 27°/ minute in the range of 10° – 75° in 20. Monochromatic Cu Ka radiation (λ=1.54060 Å) was used as X-ray source with a power 40 kV/30mA. Rietveld refinement method was used for the refinement of unit cell structure. FT-IR spectra are recorded using Thermo Scientific FT-IR spectrometer in the range 4000 – 450 cm$^{-1}$. Surface structure and particle morphology was studied using SEM (JSM – 5410). Optical absorption spectrum was recorded in a UV – Vis spectral region of 200 – 800 nm (UV 2450 Make: Shimadzu). Hitchi S – 3400 instrument was used for elemental analysis. Magnetic hysteresis measurements were made by using Vibrating Sample Magnetometer at room temperature (Make: Lake Shore, Model: 7404).

DOI: 10.9790/5736-1006013843

www.iosrjournals.org 38 | Page
EPR spectra were recorded in a Bruker spectrometer in the X Band at Liquid helium with a temperature range of 6 – 70K. TGA measurement were recorded by using TA instruments (Model: Q600 and Q20 DSC). Density measurements were done by using liquid displacement method using Carbon tetrachloride as an immersion liquid (density 1.596 g/cc at 300K)

III. Results And Discussion

3.1. X-ray diffraction studies

XRD patterns of prepared samples with different doping amount of Sm$^{3+}$ ions are given in figure-1. Sharp diffraction peaks are observed for XRD pattern of C0 to C4. Multiplets of peaks from C1 to C4 indicate the successful incorporation of Sm$^{3+}$ ion. The doping of Sm$^{3+}$ ion (0.964 Å) which has smaller ionic radius than Bi$^{3+}$ (1.03 Å), as a result it leads to structural distortion in the lattice sites [8-10]. Cell volume increases for concentration C0 to C2 and decline for C3 and C4. Average crystallite size is calculated by Scherrer formula and found to be in the range of 36 to 45nm. Though the compositional formula of SrBi$_2$O$_4$ represents spinel oxide formula AB$_2$O$_4$, SrBi$_2$O$_4$ is a non spinel oxide which crystallizes in monoclinic state as reported earlier [11-12]. Structural investigations using standard Rietveld Profile refinement indicate monoclinic phase with no other secondary phase having a space group of P / 2m, which is in agreement with the respective joint committee on powder diffraction standards. The agreement factors after Rietveld refinement of unit cell structure of SrSm$_x$Bi$_{2-x}$O$_4$ are given in the table 1.

![Fig. 1. Powder X-ray diffraction patterns of Sm$^{3+}$ substituted SrBi$_2$O$_4$ samples C0 to C4](image)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>R_p (%)</th>
<th>R_w (%)</th>
<th>R_{exp} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>100.63</td>
<td>98.82</td>
<td>0.06</td>
</tr>
<tr>
<td>C1</td>
<td>95.79</td>
<td>94.38</td>
<td>0.07</td>
</tr>
<tr>
<td>C2</td>
<td>97.14</td>
<td>97.18</td>
<td>0.08</td>
</tr>
<tr>
<td>C3</td>
<td>91.92</td>
<td>99.88</td>
<td>0.09</td>
</tr>
<tr>
<td>C4</td>
<td>97.42</td>
<td>96.17</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table. 1. Agreement factors after Rietveld refinement of SrSm$_x$Bi$_{2-x}$O$_4$ unit cell structure

3.2. Thermal analysis

From TG curve, it is evident that weight loss starts gradually from room temperature (Fig. 2). First stage of decomposition starts from room temperature to 400°C which might be due to elimination of trapped water molecule. In general sol gel method shows weight loss due to dehydration by 5% [13]. In second stage, there is a slight weight loss at 400°C which is due to removal of oxygen present in the sample. To conclude there is no significant thermal change and the compound is thermally stable up to 800°C.
3.3. SEM and Elemental analysis

Scanning electron micrograph and EDX of prepared samples are shown in the figure-3. Nature of Sm$^{3+}$ doped SrBi$_2$O$_4$ oxide shows nano rod formation for C0. From C1 to C4 agglomeration can be seen for the prepared samples with the increase in concentration of Sm$^{3+}$ ion. Incorporation of samarium ion in the lattice reduces the pores and void present in the lattice structure. Elemental analysis confirms the presence of oxygen, samarium, strontium and bismuth in the stoichiometric proportion (Table 2). Elemental analysis results show that the prepared samples are free from impurity.

Table 2. Elemental composition of prepared samples using EDX

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sr (wt %)</th>
<th>Sm (wt %)</th>
<th>Bi (wt %)</th>
<th>O (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>12.05</td>
<td>-</td>
<td>69.62</td>
<td>18.34</td>
</tr>
<tr>
<td>C1</td>
<td>17.94</td>
<td>3.77</td>
<td>49.13</td>
<td>29.15</td>
</tr>
<tr>
<td>C2</td>
<td>16.75</td>
<td>6.70</td>
<td>50.40</td>
<td>26.15</td>
</tr>
<tr>
<td>C3</td>
<td>16.21</td>
<td>12.08</td>
<td>46.91</td>
<td>24.80</td>
</tr>
<tr>
<td>C4</td>
<td>18.54</td>
<td>11.32</td>
<td>45.35</td>
<td>24.79</td>
</tr>
</tbody>
</table>

3.4. UV-Visible absorption studies

UV-Vis absorption spectra of Sm$^{3+}$ doped SrBi$_2$O$_4$ oxides for composition x = 0, 0.1 and 0.2 is shown in figure-4. Sm$^{3+}$ doped SrBi$_2$O$_4$ oxides shows optical absorption in the range 350 - 400nm. As the concentration of Sm$^{3+}$ increases, absorption shows a mild shift to longer wavelength. This is due to the charge transfer from 2p orbital of oxygen atom to 4f orbital of Sm$^{3+}$ ion. Undoped SrBi$_2$O$_4$ shows absorption at 340nm and substitution of Sm$^{3+}$ increases the absorption wavelength to 410nm.
Synthesis and Characterization of Samarium doped SrBi$_2$O$_4$ oxides

3.5. Fourier Transform Infrared

A representative FT-IR spectrum is given in the figure-5 for sample C3. Broad band in the range 3124 cm$^{-1}$ is assigned to stretching mode of OH group and absorption in the range 1766 cm$^{-1}$ assigned to bending mode of OH group. Vibration around 1470 cm$^{-1}$ to 1390 cm$^{-1}$ assigned to antisymmetric NO stretching vibration because of residual nitrate present in the sample [14]. In the region less than 1000 cm$^{-1}$ there are absorption band at 906 cm$^{-1}$, 853 cm$^{-1}$, 703 cm$^{-1}$, 629 cm$^{-1}$ and 553 cm$^{-1}$. Absorption at 533 and 629 cm$^{-1}$ is due to Bi-O stretching vibration at [BiO$_6$] units at octahedral sites and weak shoulder at 703 cm$^{-1}$ corresponds to symmetric stretching vibration of Bi-O bond in pyramidal [BiO$_3$] units [14,15]. Broad band at 853 cm$^{-1}$ is assigned to Sr-O bond [12] or due to vibration of Sm$^{3+}$-O$^2-$ bond [16].

3.6. Magnetic measurements

Magnetic hysteresis loops of Sm$^{3+}$ doped SrBi$_2$O$_4$ oxides C1 to C4 show a soft ferromagnetic behaviour at room temperature (Fig. 6 & 7). Sample C0 exhibit diamagnetic behaviour owing to the absence of Sm$^{3+}$ ion as Sr$^{2+}$ and Bi$^{3+}$ shows diamagnetic character. Samples C1 to C4 show a weak ferromagnetic behaviour in the order of 10$^{-3}$ emu/g which indicates successful incorporation of Sm$^{3+}$ ion (Table 3). Paramagnetic nature of Sm$^{3+}$ is mainly due to the presence of unpaired 4f electron. From VSM figure, one can infer that ferromagnetic curve for x = 0.30 and 0.60 are very narrow which is due to low values of saturation magnetization M_S and magnetic remanence M_r. Increase in samarium concentration leads to the porosity which may be the reason for the declining M_S values. Also variation in M_S values are due to the different cation distribution and surface structural distortion. Variation in coercivity values are attributed to movement of domain walls in response to the magnetic field [17].
Synthesis and Characterization of Samarium doped SrBi$_2$O$_4$ oxides

Fig. 6. Hysteresis loop showing diamagnetic behaviour of SrBi$_2$O$_4$

Fig. 7. Hysteresis loop showing ferromagnetic behaviour of SrSm$_x$Bi$_2$O$_4$ series

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Magnetic Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_r (emu/g)</td>
<td>M_r (emu/g)</td>
</tr>
<tr>
<td>C0</td>
<td>16.446 x 10$^{-3}$</td>
<td>3.527 x 10$^{-3}$</td>
</tr>
<tr>
<td>C1</td>
<td>18.908 x 10$^{-3}$</td>
<td>7.342 x 10$^{-3}$</td>
</tr>
<tr>
<td>C2</td>
<td>0.754 x 10$^{-3}$</td>
<td>0.050 x 10$^{-3}$</td>
</tr>
<tr>
<td>C3</td>
<td>3.366 x 10$^{-3}$</td>
<td>0.523 x 10$^{-3}$</td>
</tr>
<tr>
<td>C4</td>
<td>0.147 x 10$^{-3}$</td>
<td>0.013 x 10$^{-3}$</td>
</tr>
</tbody>
</table>

Table 3. Magnetisation values of SrSm$_x$Bi$_2$O$_4$

3.7. **EPR studies**

Figure-5 shows EPR spectra of Sm$^{3+}$ doped SrBi$_2$O$_4$ oxide with $x = 0.30$ at 93 K. Electronic configuration of Sm$^{3+}$ is 4f5. Rare earth ion with half filled 4f shell is strongly coupled to lattice fluctuations except Gd$^{3+}$ ion with 4f7 configuration. Due to this, these ions have short spin-lattice relaxation times and as a result, EPR spectra can be observed only at low liquid helium temperature. From the EPR spectra, we can observe two absorption signals. First absorption signal at $g \sim 1.9$ is weak, less intense and broadened due to unresolved hyperfine splitting which indicate the presence of paramagnetic site due to Sm$^{3+}$ ion [18-20]. Second absorption signal at $g \sim 4.2$ to 4.8 is broad, unresolved giving a long shoulder like structure.

Fig. 7. EPR Spectra of Sm$^{3+}$ doped SrSm$_x$Bi$_2$O$_4$ oxide at Liquid helium temperature when $x = 0.2$
IV. Conclusion

Sm$^{3+}$ doped SrBi$_2$O$_4$ oxides with varying composition were synthesized by sol gel method. Powder XRD analysis confirms the presence of monoclinic structure with space group P 2/m. TGA-DSC reveals no significant weight loss and all the samples are thermally stable up to 800 °C. FT-IR analysis confirms the stretching vibration of Bi-O bond in octahedral coordination sites. EPR studies reveal weak paramagnetic absorption with g ~1.9 with defect line content. Scanning electron microscope shows grains which are agglomerated with irregular particle size. UV-Vis absorption studies shows absorption in the range 350-400nm. Magnetic behaviour of samples shows weak ferromagnetic of the order of 10$^{-3}$ emu/g. Decrease in magnetic values is due to increase in samarium concentration which reduces magnetic behaviour between strontium and bismuth sites.

References

[2] X. Cao, G. Liu, Y. Wang, J. Li and R. Hong, Preparation of octahedral shaped Mn$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$ ferrites via co-precipitation Journal of Alloys and Compounds, 497(1-2), 2010, L9-L12.

